J 2014

Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy

ZOZOMOVÁ-LIHOVÁ, Judita, Karol KRAK, Terezie MANDÁKOVÁ, Kentaro K. SHIMIZU, Stanislav ŠPANIEL et. al.

Basic information

Original name

Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy

Authors

ZOZOMOVÁ-LIHOVÁ, Judita (703 Slovakia), Karol KRAK (203 Czech Republic), Terezie MANDÁKOVÁ (203 Czech Republic, belonging to the institution), Kentaro K. SHIMIZU (756 Switzerland), Stanislav ŠPANIEL (203 Czech Republic), Petr VÍT (203 Czech Republic) and Martin LYSÁK (203 Czech Republic, guarantor, belonging to the institution)

Edition

Annals of Botany, Oxford, Oxford University Press, 2014, 0305-7364

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

Genetics and molecular biology

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.654

RIV identification code

RIV/00216224:14740/14:00074136

Organization unit

Central European Institute of Technology

UT WoS

000333249000007

Keywords in English

MULTILOCUS GENOTYPE DATA; POPULATION-STRUCTURE; TRAGOPOGON ASTERACEAE; ALLOPOLYPLOID ORIGIN; RECURRENT FORMATION; AMARA BRASSICACEAE; MOLECULAR EVIDENCE; HYBRID SPECIATION; GENETIC DIVERSITY; GENOME EVOLUTION

Tags

International impact, Reviewed
Změněno: 26/11/2014 11:43, Martina Prášilová

Abstract

V originále

Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past 150 years that presumably arose by autopolyploidization of a triploid hybrid, C. insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrids.

Links

EE2.3.20.0189, research and development project
Name: Rozvoj výzkumné excelence v oblasti evoluční cytogenomiky, epigenetiky a buněčné signalizace
EE2.3.30.0037, research and development project
Name: Zaměstnáním nejlepších mladých vědců k rozvoji mezinárodní spolupráce
GAP501/10/1014, research and development project
Name: Evoluce genomu alopolyploidních řeřišnic (Cardamine) rozdílného fylogenetického stáří
Investor: Czech Science Foundation