Detailed Information on Publication Record
2015
Discrete oscillation theorems and weighted focal points for Hamiltonian difference systems with nonlinear dependence on a spectral parameter
DOŠLÝ, Ondřej and Julia ELYSEEVABasic information
Original name
Discrete oscillation theorems and weighted focal points for Hamiltonian difference systems with nonlinear dependence on a spectral parameter
Authors
DOŠLÝ, Ondřej (203 Czech Republic, guarantor, belonging to the institution) and Julia ELYSEEVA (643 Russian Federation)
Edition
Applied Mathematical Letters, 2015, 0893-9659
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.659
RIV identification code
RIV/00216224:14310/15:00080632
Organization unit
Faculty of Science
UT WoS
000350085500020
Keywords in English
Discrete eigenvalue problem; Hamiltonian difference system; oscillation theorem; finite eigenvalue; comparative index
Změněno: 5/4/2016 15:46, Ing. Andrea Mikešková
Abstract
V originále
In this paper we generalize oscillation theorems for discrete Hamiltonian eigenvalue problems with nonlinear dependence on the spectral parameter. In our version of the discrete oscillation theorems, we incorporate the case when the block B of the discrete Hamiltonian H has nonconstant rank with respect to the spectral parameter. We introduce a new notion of weighted focal points for conjoined bases of the Hamiltonian difference systems and we show that the number of weighted focal points plays the role of the classical number of focal points in the discrete oscillation theorems for the Hamiltonian spectral problems with the nonconstant rank of B.
Links
GAP201/10/1032, research and development project |
|