J 2015

A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): The role of fluorine in origin of tin mineralization

XIE, Lei, Ru-Cheng WANG, Lee A. GROAT, Jin-Chu ZHU, Fang-Fang HUANG et. al.

Basic information

Original name

A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): The role of fluorine in origin of tin mineralization

Authors

XIE, Lei, Ru-Cheng WANG, Lee A. GROAT, Jin-Chu ZHU, Fang-Fang HUANG and Jan CEMPÍREK

Edition

Ore Geology Reviews, Amsterdam, Elsevier Science Inc. 2015, 0169-1368

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10500 1.5. Earth and related environmental sciences

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.819

Organization unit

Faculty of Science

UT WoS

000348083800005

Keywords in English

Tin mineralization; Li-bearing mica; Cassiterite; Rutile; Fluorine; Immiscible fluid system; Qitianling

Tags

International impact, Reviewed
Změněno: 8/4/2020 18:23, Mgr. Marie Šípková, DiS.

Abstract

V originále

The Sn-rich Qiguling topaz rhyolite dike intrudes the Qitianling biotite granite of the Nanling Range in southern China; the granite hosts the large Furong Sn deposit. The rhyolite dike is typically peraluminous, volatile-enriched, and highly evolved. Whole-rock F and Sn concentrations attain 1.9 wt.% and 2700 ppm, respectively. Cassiterite and rutile are the only Sn and Ti minerals; both cassiterite and Nb-rich rutile are commonly included in the phenocrysts. The Sn-Ti-F assemblage is pervasive, and contains spongy cassiterite in some cases; cassiterite also occurs in quartz veinlets which cut the groundmass. Electron microprobe and LA-ICP-MS compositions were used to study the magmatic and hydrothermal processes and the role of F in Sn mineralization. The presence of zinnwaldite and "Mus-Ann", which are respectively representative of early and late mica crystallization during magma differentiation, also suggests a significant decrease in f(HF)/f(H2O) of the system. Cassiterite included in the zinnwaldite phenocrysts is suggested to have crystallized from the primary magma at high temperature. Within the Sn-Ti-F aggregates, rutile crystallized as the earliest mineral, followed by fluorite and cassiterite. Spongy cassiterite containing inclusions of the groundmass minerals indicate a low viscosity of the late fluid. The cassiterite in the quartz veinlets crystallized from low-temperature hydrothermal fluids, which possibly mixed with meteoric water. In general, cassiterite precipitated during both magmatic and hydrothermal stages, and over a range of temperatures. The original fluorine and tin enrichments,f(HF)/f(H2O) change in the residual magma, formation of Ca,Sn,F-rich immiscible fluid, decrease of the f(HF) during groundmass crystallization, and mixing of magma-derived fluids with low-saline meteoric water during the late hydrothermal stage, are all factors independently or together responsible for the Sn mineralization in the Qiguling rhyolite.