D 2015

Automated Cell Segmentation in Phase-Contrast Images based on Classification and Region Growing

STOKLASA, Roman, Lukáš BÁLEK, Pavel KREJČÍ and Petr MATULA

Basic information

Original name

Automated Cell Segmentation in Phase-Contrast Images based on Classification and Region Growing

Authors

STOKLASA, Roman (703 Slovakia, belonging to the institution), Lukáš BÁLEK (203 Czech Republic, belonging to the institution), Pavel KREJČÍ (203 Czech Republic, belonging to the institution) and Petr MATULA (203 Czech Republic, guarantor, belonging to the institution)

Edition

Neuveden, Proceedings of 2015 IEEE International Symposium on Biomedical Imaging, 2015. p. 1447-1451, 5 pp. 2015

Publisher

Engineering in Medicine and Biology Society

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

storage medium (CD, DVD, flash disk)

References:

RIV identification code

RIV/00216224:14330/15:00082559

Organization unit

Faculty of Informatics

ISBN

978-1-4799-2374-8

ISSN

UT WoS

000380546000348

Keywords in English

phase-contrast microscopy; segmentation; classification; superpixel; cells

Tags

International impact, Reviewed
Změněno: 26/6/2020 10:45, Mgr. Marie Šípková, DiS.

Abstract

V originále

Cell segmentation in phase-contrast microscopy images remains a challenging problem because of the large variability in subcellular structures and imaging artifacts. In this paper, we present an approach to the automatic segmentation of tightly packed cells in phase-contrast images. We combine the classification of superpixels with the region-growing method to locate cell membrane boundaries. We demonstrate that such a combined approach is able to perform the task of cell detection and segmentation with a high level of precision. On the presented dataset, we achieved 90% precision with 78% recall. The results indicate that this method is suitable for real biological applications.

Links

MUNI/A/1159/2014, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace IV.
Investor: Masaryk University, Category A
MUNI/A/1206/2014, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A
MUNI/M/0071/2013, interní kód MU
Name: High-throughput screening of compound libraries aimed on discovery of novel inhibitors of the FGFR/ERK MAP kinase signaling (Acronym: HTS-FGFR)
Investor: Masaryk University, INTERDISCIPLINARY - Interdisciplinary research projects