

Petr Velan petr.velan@cesnet.cz

High-Density Network Flow Monitoring

IM2015

12 May 2015, Ottawa

Motivation

What is high-density flow monitoring?

• Monitor high traffic in as little rack units as possible

Why do we want high-density flow monitoring?

- Flow monitoring is deployed on many lines
- Number of flow probes is growing
- Management and operational costs are growing
- One probe per link does not scale

6							
12							
151							
					8.1		
					8 1		
12				-			
112			•				
114	-						
115	•		*				
H.B.	-						
нь			3		8		
164	-	COMPLEX NO.	1000				
885		-	100-				
	-	_	-				
			0				
I B							
112	•		•				
UP:	-						
112	۰.		0				
UP:	-						
18.5							
110	۰.						
102	<	- 64					
11.5							
110	۰.						
100				_			
18	•						
A							
1 H							-
18	•						
114						4	r -
100				-			
-	-		_				

Results

Our Approach

- Use our custom made network interface cards to monitor multiple 10G links
- See what throughput can be achieved in one machine
- Test how advanced features of our NICs help the monitoring
- Identify performance bottlenecks

Introduction	Monitoring Setup	Results	Conclusions

Monitoring Setup

The Testbed

- Dell PowerEdge R720 server (2 rack units)
- $2 \times$ E5-2670 v1 CPUs (8 cores, 3 GHz)
- 64GB DDR3 RAM (1600 MHz)
- Scientific Linux 6.5 with 2.6.32-41 kernel
- $2 \times$ COMBO-80G cards

- FPGA based programmable hardware
- \bullet Two QSPF+ interfaces in 40 G or 4 \times 10 G Ethernet mode
- 80 G per card
- PCI-Express gen3 x8 bus (64 Gb/s)
- Additional features:
 - Accurate timestamps
 - Hash based packet distribution
 - Packet trimming
 - Packet feature extraction into Unified Header

Our setup allows to monitor $16\times\ 10\,G$ links

Results

COMBO-80G NIC

- Multi-threaded design
- Utilizes 2N + 1 CPU cores where N is number of ring buffers

- Spirent TestCenter hardware
- $\bullet~1\times~10\,\text{G}$ repeated to all 16 interfaces
- IPv4 UDP packets
- Packet sizes 64 B, 128 B, 256 B, 512 B
- Flow counts 2^{11} , 2^{18} , 2^{21}

Results	
---------	--

The Measurement

Full packet processing performance in packets/s.

Basic Performance on Full Packets

- PCI-Express limit is reached only for the longest packets
- NUMA architecture affects the performance
- Number of flows has large impact mainly on short packets

Packet processing performance in packets/s for 2^{18} flows.

- Packet trimming ad Unified Headers help significantly
- Full throughput monitoring for 256 B and longer packets
- Packet trimming and Unified Headers solve the problem of PCI-Express throughput

- Comparison of the E5-2670 with E5-2620
- Only 6 cores, 2 Ghz frequency

Comparison for two different CPUs on trimmed packets

- Faster CPU helps greatly for less flows
- Large number of flows has greater impact on memory bus utilization
- Both CPU are doing well for longer packets

Conclusions

& Future Work

- It is possible to monitor $16 \times 10 \text{ G}$ links in one 2U box
- Hardware acceleration can significantly help to improve the performance
- PCI-Express can be limiting for commodity cards
- NUMA architecture must be taken into consideration
- Number of flows has significant impact on performance

Future Work

- Test the performance with COMBO-100G cards (PCle gen3 ×16)
- High-speed expriment with application flow measurements
- Build better framework for measurements
 - Different flow lengths
 - More complex packets and flows
 - Different packets in one flow

Thanks for your attention

High-Density Network Flow Monitoring

IM2015

