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Abstract. The motion planning is an important part of robots’ models. It is
responsible for robot’s movements. In this work, the cell decomposition algorithm
is used to find a spatial path on preliminary static workspaces, and then, the rapidly
exploring random tree algorithm (RRT) is used to validate this path on the actual
workspace. Two methods have been proposed to enhance the omnidirectional
robot’s navigation on partially changed workspace. First, the planner creates a
RRT tree and biases its growth toward the path’s points in ordered form. The
planner reduces the probability of choosing the next point when a collision is
detected, which in turn increases the RRT’s expansion on the free space. The
second method uses a straight planner to connect path’s points. If a collision is
detected, the planner places RRTs on both sides of the collided segment. The
proposed methods are compared with the others approaches, and the simulation
shows better results in term of efficiency and completeness.

Keywords: Path re-planning · Motion planning · RRT · Cell decomposition ·
Multi RRT

1 Introduction

The motion-planning problem is an active subject in the robotics field. It attracts the
researchers to develop and increase the motion independence of the systems. The high
demand of autonomous system leads to develop many concepts of motion planning.
They vary in the efficiency and the domain of applications. Examples of these algorithms
are: local planners, e.g. Bug algorithm [1]; roadmap approaches, for example, visibility
roadmap and Voronoi diagrams [2]; cell decomposition methods, which are divided the
working space into manageable regions, and classified the workspace into free and
obstacle areas. Other examples of motion planners are the randomized sample-based
algorithms, these approaches try to approximate the workspace by taking samples from
it randomly [3]. Recently, many researchers have studied the combination of these
methods, in order to avoid the drawbacks and enhance the performance.

In this paper, our focus is to develop an efficient planner on slightly changed work‐
space. The proposed methods are designed for the robot’s omnidirectional movement.
The approximation cell decomposition (ACD) is used and combined with the RRT
planner in order to enhance the robot’s navigation. The ACD finds a spatial path on
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preliminary and stationary workspaces, and then the RRT is used to validate this path
on the actual workspace.

Two methods have been proposed in this paper. The First one creates instances
of RRTs and biases their growth toward the points of the ACD’s path in ordered
form. It updates the bias values based on the collision information. If changes are
made to the workspace and a collision is found along the path’s segments, the
planner attempts to find a new sub-path locally by exploring the space around the
collision place using RRT. The Second method uses a straight-line planner to
connect the path’s points. It creates local RRT trees on both sides of the collided
segment of the path, if one is detected.

This paper organized as follows, The RRT algorithms and related developments are
presented in Sect. 2. In Sect. 3, the principle of cell decomposition algorithms is
reviewed. The proposed method and result is discussed in Sects. 4 and 5, respectively.
Finally, we conclude the results.

2 Rapidly Exploring Random Tree (RRT)

The rapidly exploring random tree algorithm is a sample-based motion planner [4, 5]. It
does not evaluate the workspace in an exact manner; rather, it deals with configurations
that are taken randomly from the configuration space. The principle of RRT algorithms
is to build a filling space tree and pulling the tree’s growth toward unexplored regions.
It takes a configuration randomly and then branching a new extension from the nearest
node of the tree toward this configuration. The new branch’s length is determined by the
incremental step parameter. If this branch does not collide with obstacles or it does not
break constrains, it is kept in the RRT tree. Thus, the tree is growing outward of the initial
position. The principle of the basic RRT algorithm is shown in Fig. 1.

Fig. 1. RRT principle

In navigation problem, the RRT produces a feasible path between the initial position
and the goal one, if these locations existed in the tree’s nodes. The feasibility of the path
comes due to the tree characteristic, where the tree is built up of valid connections
between the tree’s nodes. It starts from the initial location and explores the space until

132 A. Abbadi and V. Prenosil



it finds the goal, then it produces the path. The tree’s nodes from the root to the goal leaf
represent the path’s vertices.

The basic RRT algorithm is shown in Fig. 2. It takes as input parameters the initial
location, the goal location, and the incremental step. In addition, it takes termination
parameters such as a maximum number of attempts to grow branches, a time limitation,
or other parameters based on the application. The output is a graph has a tree structure,
where the nodes represent the tree’s vertices, and the edges represent the connection
between these vertices.

Fig. 2. RRT algorithm

The algorithm starts by placing the tree’s root on the initial location, and then it takes
a random sample from the configuration space. It finds the nearest tree’s vertex to this
sample, and creates a new point on the segments between the chosen random point and
the nearest point. The new point is located far from the nearest point by a distance equals
to the incremental step. If no collision is detected, then the algorithm adds the new point
as a vertex to the tree and the segment between the new point and the nearest vertex is
added as an edge to the tree. These steps are repeated until a path between the initial and
the goal locations is found, or a termination condition is satisfied.

RRT algorithm attracts the attentions due to its simplicity and its success in solving
the complex navigation problems, including the problems that have dynamic and kine‐
matic constraints. In the next paragraphs, some of RRT developments and improvements
are reviewed.

The basic RRT planner grows one tree and tries to find the goal point. A development
of this approach proposed the use of bi-directional trees or multi-trees. These trees bias
toward each other in order to merge and form united structure. This strategy enhances
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the possibility to find a route more quickly because instead of searching for one point,
the goal one, any connection with the others trees’ nodes can lead to a solution [6, 7].

The second category of RRT improvements based on the changing of sampling
strategies; some studies introduce the bias toward the goal configuration, which means
choosing the goal location by a specific value of probability instead of taking a random
sample. Other researchers suggest making the bias toward hull around the goal [5], or
to previous configurations of the success plans [8, 9]. A survey of RRT variations and
developments were reviewed and published in [10].

The main drawbacks of RRT algorithm appear when it operates in small and narrow
area, due to the random sampling strategy. The basic RRT uses a pseudorandom sample
generator. This uniform distribution takes a sample from the space in equal probability,
which means, the small regions have a lower probability to sample within them. As a
result, the RRT efficiency is decreased when the workspace contains narrow areas.

3 Cell Decomposition

The key idea behind the Cell decomposition algorithms (CDs) is to divide the workspace
into manageable regions. These regions are classified into two categories, the areas
located in the obstacles space (The obstacle cells) and the areas in the free space (The
free calls).

In navigation application, the CDs are utilized to find a path through the free cells.
In order to simplify the navigation problem, these algorithms build a graph of the adja‐
cent free cells to represent the free workspace. The graph’s nodes represent the free cells,
while the graph’s edges represent the adjacency relation between the cells; two adjacent
cells, which share a common barrier, create an edge in the graph.

The CDs approaches are classified as exact methods and approximation ones. In the
exact cell decomposition cases, the free workspace is equal to the union of all generated
cells exactly, while in approximation methods the free workspace is approximated by
set of adjacent free cells.

An example of exact cell decomposition methods in 2D is the trapezoidal cell
decomposition as shown in Fig. 3-a. It creates striped trapezoidal or triangular cells by
means of sweeping line technique. Figure 4, shows the graph of adjacency to the example
in Fig. 3-a, the shaded boxes represent the route of free cells between the initial and the
goal locations.

The other examples of exact cell decomposition methods and its application are
proposed and discussed in [1, 3, 11, 12].

The quad-tree approximation algorithm is an example of approximation cell decom‐
position (ACD) in 2D [2, 13]. It divides the workspace into four quarters. If a quarter
locates in the free areas completely, it is marked as a free cell; otherwise, it is marked
as an obstacle cell if it locates in obstacles areas completely. The other case when this
quarter contains parts of both free and obstacles regions, in this case, the algorithm
divides it into four quarters. This process is repeated until all cells are located completely
either in free areas or obstacle regions, or a specific resolution is reached. The resolution
in this case represents the smallest cell’s edge. Figure 3-b shows the quad-tree cell
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decomposition methods. Another example of the approximation cell decomposition in
navigation problem is discussed in [14–17].

The main drawback of CDs methods is the sensitivity to the environment changes.
Where any small changes require re-executes the algorithm again and generates another
adjacency graph.

4 Proposed Methods

In this work, RRT and ACD algorithms are combined together in order to exploit the
advantages of each of them. The new planners try to overcome the drawbacks, which
affect the performance of the navigation process significantly, by complementing these
two approaches. The RRT planner has relatively high tolerance to obstacles shapes and
workspace changes. This feature is missing in ACD planner. In addition, The RRT is
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Fig. 3. The free space representation using, a: an exact CD method, b: an approximation CD
method
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Fig. 4. Cell decomposition’s adjacency graph. The dark boxes represent the free route in the
workspace between the initial’s cell and the goal’s cell
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not effective in small areas or narrow passage, while ACD planner does not face this
problem. Based on that, the efficient spatial planner, ACD, is used to plan a primary path
on stationary workspace. Then, this path is used to guide the RRT growth. The RRT
planner validates the ACD’s path when a query is established in the actual workspace.
If a collision is detected due to the change in the workspace, the planner re-plans the
path locally through the changed regions.

Two approaches have been proposed to benefit from this combination. The planners
focus on the enhancement of navigation problem for omnidirectional robots in partial
dynamic workspace. In next sections these two proposed methods are discussed in more
detail.

4.1 RRTs Validator Planner

The RRT validator uses ACD’s path as guidance to RRT tree’s growth. It considers the
path’s points as an ordered set, and directs the bias of the tree toward these vertices. The
RRT trees branch toward these set in the same order, point by point. In the initial state,
the probability of choosing the next point of the path is set to the value of 100 %. If a
collision is detected, then the probability is reduced in order to allow the RRT explores
the free space and attempts to reconnect to original path’s point. If it reconnects, then
the probability to choose the next point is set again to the value of 100 % to force the
planner follows the original ACD’s path once again.

This strategy forces the planner to follow the guiding path when it is possible, and
at the same time, it gives the planner a freedom to find an alternative local path to the
collided segments.

In this paper, two RRT validators are used to validate the path. The first one rooted at
the initial position and the second one rooted at the goal position. They try to follow the
ACD path, or find an alternative local path. The RRT trees are shown in Fig. 5-a, where
they try to follow the ACD’ path (the dotted line).
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Fig. 5. The Proposed methods. The dotted line represents the ACD’s path on stationary
workspace. a: The RRT validator method creates two RRT trees from the initial and the goal
locations. b: The local RRTs method creates nine local RRT trees
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4.2 Local RRTs Planners

The second proposed planner uses simple straight-line planner to connect the ACD
path’s points and to test the collision. The planner tracks the valid points of the path and
creates sequences of these points. In case that all points are valid, then the planner returns
these points as a solution for the planning problem. In the other case when the workspace
is changed, and a collision happened, the planner breaks the original path sequence on
the collided locations and creates multi-sequences of the continuance valid points. It
also excludes the points that are located in obstacle areas.

Each of these sequences is associated with RRT tree. The trees explore the space
freely with small bias toward the other tree’s nodes. When two nodes are connected, the
corresponding trees are merged. When all trees are merged, they form a single tree
contains the initial and goal locations.

In this planner, our strategy is to generate augmented local RRTs, in order to navigate
around the new obstacles locally. Figure 5-b shows the local RRTs method in simulation.
In this example, it creates nine local RRT trees based on the ACD path, which generated
in the stationary workspace.

5 Tests and Results

The proposed approaches are tested in two different workspaces as shown in Fig. 6. The
first workspace represents an office with one route between the rooms, and the second
one represents offices, which have two possible routes between them.

The robot in this work is considered a holonomic point moves in the workspace. The
results of the proposed methods are compared to the other methods, i.e. the basic RRT
algorithm, Goal Bias RRT, and the bias toward the other trees. Figure 7 shows an
example of RRT path generated by the proposed methods in the testing workspaces,
where in (a) the local RRTs method is used, and in (b) the RRTs validator method is
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Fig. 6. Testing workspace, a: office has one route between the rooms (WS1); b: two routes
between offices (WS2)
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used. The bold line represent the shorten path to RRT’s one. Where the algorithm which
generates the shortened path is proposed in [18].

5.1 Testing Parameters

The bias values, which are given to the compared methods, are set as shown in Table 1,
where the basic RRT chooses a random point without any bias. The goal-bias RRT
directs the growth of the tree toward the goal location by selecting this location in prob‐
ability of 10 %. In the tree’s nodes bias, the RRT chooses a point of the others trees by
the probability of 30 %, which force the trees to merge more quickly.

Table 1. The probability of choosing next points (The bias value).

Method Bias value

RRT 0

Goal bias 0.1

Tree node bias 0.3

RRTs validator (valid point) 1

RRTs validator (Collison) [0.2,0.1,0.7]

Local RRTs 0.3
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Fig. 7. Example of RRT path using a: Local RRTs method; b: RRTs validator method, on partially
changed workspaces. The bold lines represent the RRT path and the shorten one in both tested
workspaces. The boxes represent the new obstacles
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In our proposed methods, the bias value of the validator RRTs is set to 100 % when
no collision is occurred. Otherwise, it has the value of 20 % of the bias toward the next
valid point in the ordered set. In addition, the value of 10 % to bias toward any other
points in those points set. The planner in this case has the probability of 70 % to explore
the workspace freely and biases the growth toward randomly chosen samples. The last
method, local RRTs approach, uses the bias toward the other trees by the value of 30 %.

The simulation is repeated 100 times and the average of successful tries are consid‐
ered when comparing the results. The results include the execution time; the number of
RRT iterations which corresponding to the number of RRT’s branching attempts; and
the number of successful attempts to find a path.

The probabilistically completeness value is estimated using the number of successful
attempts. While the efficiency value is estimated using the time of execution and itera‐
tions results. The time of execution could vary significantly, based on the hardware and
code optimization, while RRT iteration is independent of HW and the programmers
skillful.

The ACD resolution is set to be 0.2 unit. The ACD’s path points are generated in
ordered form, from the initial to the goal locations. They are constructed using the initial
and the goal points, the free cells’ centers, and the barriers’ midpoint between the conse‐
quence cells.

We use the Dijkstra algorithm to search in the ACD’s graph. The RRT parameters
are set as follow; the extension step is equal to 0.3 unit. And, the bias value is fixed at
the probability of 100 % for next path’ points in case of no collision is detected, and it
is reduced when the path is collided within obstacles. The reduced value is divided into
three parts. 1- The bias toward the next valid point is set to the value of 20 %. 2- The
bias toward other path’s points is given the value of 10 %. 3- The rest of bias is relaxed
to allow the planner chooses random samples freely. The RRT result is considered as
failed, if it cannot find a path after 2000 tries of branching.

5.2 Results and Discussions

In the first workspace, new obstacles are scattered on the original workspace. They are
positioned to collide the ACD’s path and add more difficulty to navigate through the
changed workspace. The workspace’s changes are shown in Fig. 8-b, where the boxes
represent the new obstacles. The ACD’s path is shown as a solid line between the initial
and the goal locations. The cycle markers represent the bias points. ACD algorithm
approximates the free cells as shown graphically in Fig. 8-a, the path in this case is
produced using the Dijkstra searching method in the ACD’s adjacency graph.

The numerical results are shown in Table 2, where the proposed methods show a
probabilistically completeness. The local RRT method gives the best results in term of
efficiency; it has the lowest execution time, and the lowest iteration to find a path.
Moreover, the RRT validator method gives a better result comparing to the other
competitors. Figure 10-a sums up the iteration results for the first workspace WS1 using
the boxplot representation.
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Table 2. The result of the tested methods on WS1.

Method Mean time [Sec] Mean iteration Success [%]

RRT 1.03 1137.11      96

Goal bias 1.12 1180.57      87

Tree node bias 1.23 1365.34      80

RRTs validator 0.45      270.19 100

Local RRTs 0.19           95.20 100

In the second workspace, the changes are introduced by scattering new obstacles in
the stationary workspace. The new obstacles are collided within the ACD’s path, and
they produce more narrow passages. Figure 9-b shows the changes in the workspace,
where the new obstacles are represented by boxes. The ACD’s path is shown in the
figure as solid line between the initial and the goal locations. The bias points, which are
generated based on this path, are shown in the figure as cycle markers. Figure 9-a, shows
the approximation of the free workspace using ACD algorithm.

The numerical results are shown in Table 3, where the proposed methods give the
best results; they are probabilistically complete as we infer from the success rate result.
Moreover, the local RRT method gives the best results in term of efficiency; it has the
lowest execution time, and the lowest iteration average. Figure 10-b condenses the iter‐
ation results for WS2 using the boxplot representation.
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Fig. 8. Offices-like workspace (WS1), a: The approximation decomposition of the free region;
b: the new obstacles are represented as boxes. ACD’ path is represented by the solid line, and the
cycle markers represents the bias points
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Table 3. The result of the tested methods on WS2.

Method Mean time [Sec.] Mean iteration Success [%]

RRT 0.92      817.13       96

Goal bias 0.98      871.06      94

Tree node bias 1.076 1005.10      86

RRTs validator 0.62      332.07 100

Local RRTs 0.24      117.17 100
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Fig. 10. RRT’s iteration boxplot for WS1 (a) and WS2 (b)
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Fig. 9. Offices-like workspace (WS2), a: a graphical representation of approximation cell
decomposition; b: the new obstacles (boxes). ACD path represented by the solid line, and the bias
points represented by cycle markers
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6 Conclusion

In this work, the approximation cell-decomposition algorithm is combined with the RRT
planner in order to enhance the omnidirectional robot’s navigation on partially changed
workspace. The ACD finds a spatial path on preliminary and stationary workspaces, and
then the RRT is used to validate this path on the actual workspace.

Two methods have been proposed in this paper. First, the planner creates instances
of RRT, which bias toward the ACD path’s points in order form. It updates its bias value
based on the collision detection information.

The Second method uses a straight-line planner to connect path’s points and creates
local RRT trees on both sides of collided segment of the path. The proposed methods
compared with the other approaches. The simulation results shows that the suggested
methods give the best results in terms of completeness, in addition, the local RRTs
method gives the best result in terms of efficiency in the both workspaces.
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