J 2015

Characterization of a category for monoidal topology

SOLOVJOVS, Sergejs

Basic information

Original name

Characterization of a category for monoidal topology

Authors

SOLOVJOVS, Sergejs (428 Latvia, guarantor, belonging to the institution)

Edition

Algebra Universalis, BASEL, SPRINGER BASEL AG, 2015, 0002-5240

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.344

RIV identification code

RIV/00216224:14310/15:00095795

Organization unit

Faculty of Science

UT WoS

000361534400013

Keywords in English

affine set; frame; monad; monoidal topology; premetric space; preordered set; quantale; quantale module; Sierpinski object; topological category

Tags

Tags

International impact, Reviewed
Změněno: 16/5/2018 10:14, Ing. Nicole Zrilić

Abstract

V originále

This paper characterizes one of the categories for monoidal topology of M. M. Clementino, D. Hofmann, G. J. Seal, and W. Tholen in terms of the Sierpinski object of E. G. Manes. In particular, we describe the categories of preordered sets and premetric spaces (in the sense of F. W. Lawvere) in terms of modules over a quantale.

Links

EE2.3.20.0051, research and development project
Name: Algebraické metody v kvantové logice