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RELATIONS BETWEEN CONSTANTS OF MOTION

AND CONSERVED FUNCTIONS

Josef Janyška

Abstract. We study relations between functions on the cotangent bundle
of a spacetime which are constants of motion for geodesics and functions
on the odd-dimensional phase space conserved by the Reeb vector fields of
geometrical structures generated by the metric and an electromagnetic field.

Introduction

We assume a classical spacetime E to be an oriented and time oriented 4-dimen-
sional Loretzian manifold. In literature as phase space is usually considered the
cotangent bundle T ∗E and as infinitesimal symmetries are usually considered
infinitesimal symmetries of the kinetic energy function. It is very well known, [13],
that such infinitesimal symmetries are given as the Hamiltonian lifts of functions
on T ∗E which are constants of motion for geodesics. Constants of motion which are
polynomial on fibres of the cotangent bundle are given by Killing k-vector fields,
k ≥ 1. For k = 1 the corresponding infinitesimal symmetries are the flow lifts of
Killing vector fields and so they are projectable on infinitesimal symmetries of the
spacetime. For k ≥ 2 the corresponding infinitesimal symmetries are not projectable
and they are called hidden symmetries. Moreover, if we consider coupling with an
electromagnetic 2–form, constants of motion and the corresponding infinitesimal
symmetries are generated by Killing-Maxwell multi-vector fields.

On the other hand the phase space of general relativistic test particle can be
defined either as the observer space, [3], (a part of the unit pseudosphere bundle
given by time–like future oriented vectors) or as the 1–jet space J1E of motions,
[11]. The metric and the electromagnetic fields then define geometrical structures
given by a 1–form and a closed 2-form. As phase infinitesimal symmetries we define
infinitesimal symmetries of these forms. Phase infinitesimal symmetries which are
projectable on the spacetime were studied on the observer space by Iwai [3] and on
1-jet space of motions by Janyška and Vitolo [11]. In both situations projectable
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symmetries are given by the flow lifts of Killing vector fields (eventually Killing
vector fields which are infinitesimal symmetries of the electromagnetic field).

In the paper [5] it was proved that nonprojectable (hidden) symmetries of
the contact structure of the phase space generated by the metric are given by
the Hamilton–Jacobi lifts of phase functions conserved by the Reeb vector field
of the contact structure. Moreover, it was proved that such conserved functions
are generated by Killing multi-vector fields. On the other hand if we assume the
almost-cosymplectic-contact structure of the phase space given by the metric and
the electromagnetic fields then in [7] it was proved that all infinitesimal symmetries
are projectable and there are no hidden symmetries. In this case Killing-Maxwell
multi-vector fields generate functions conserved by the Reeb vector field of the
structure, but not infinitesimal symmetries.

In the paper we discus relations between functions on T ∗E which are constants
of motion and functions on J1E conserved by the the Reeb vector fields. We prove
that conserved phase functions are obtained as a pull-back of constants of motion
on T ∗E.

1. Infinitesimal symmetries of the kinetic energy function

A classical spacetime is assumed to be an oriented and time oriented 4-dimensional
manifold E equipped with a Lorentzian metric g of signature (1, 3). We denote
by (xλ) local coordinates on E and by (xλ, ẋλ) the induced fibred coordinates on
T ∗E. In what follows we shall use notation dλ = dxλ, ḋλ = dẋλ, ∂λ = ∂

∂xλ
and

∂̇λ = ∂
∂ẋλ

The inverse metric will be denoted by ḡ.

1.1. Canonical symplectic structure. Suppose the phase space to be the co-
tangent bundle T ∗E. Then we have the canonical symplectic 2-form ω and the
canonical Poisson 2-vector Λ given by

ω = ḋλ ∧ dλ , Λ = ∂̇λ ∧ ∂λ .

Let us assume the kinetic energy function

H = 1
2g
λµ ẋλ ẋµ .

A function K on T ∗E is said to be a constant of motion if

(1.1) 0 = {H,K} = LXHK = −LXKH = gλµ ẋλ ∂µK − 1
2 ∂̇

ρK ∂ρg
λµ ẋλ ẋµ .

Remark 1.1. A phase function K is a constant of motion means that its Hamil-
tonian lift XK is an infinitesimal symmetry of the kinetic energy function or that
K is constant on geodesic curves since the Hamiltonian lift

(1.2) XH = gλρ ẋρ ∂λ − 1
2 ∂λg

ρσ ẋρ ẋσ ∂̇
λ .

is the tangent vector field of lifts of geodesics to T ∗E, [13]. �

Now, let us discuss functions satisfying the equation (1.1). If K is the pull-back

of a spacetime function then K has to be a constant. Further suppose that
k

K is
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homogeneous of order k on fibres of T ∗E, i.e.
k

K =
k

Kλ1...λk ẋλ1 . . . ẋλk ,
k

Kλ1...λk ∈ C∞(E) .

Then
k

K can be considered as a symmetric k-vector field
k

K =
k

Kλ1...λk ∂λ1�· · ·�∂λk .

Then the equation (1.1) is satisfied if and only if
k

K satisfies the Killing equation

(1.3) [ḡ,
k

K] = 0 ,

where [ , ] is the Schouten bracket for symmetric multi-vector fields. So
k

K, considered
as a k-vector field, is a Killing tensor field.

Remark 1.2. For k = 1 we obtain that a vector field
1
K admits a symmetry of

the kinetic energy function if and only if it is a Killing vector field. Moreover, the

Hamiltonian lift of the corresponding constant of motion is the flow lift T ∗
1
K of

the vector field
1
K to the cotangent bundle. �

So functions of the type

(1.4) K =
0
K +

∑
k≥1

k

Kλ1...λk ẋλ1 . . . ẋλk ,
0
K ,

k

Kλ1...λk ∈ C∞(E) ,

are constants of motion if and only if
0
K is a constant and

k

K, k ≥ 1, are Killing
multi-vector fields.

1.2. (Souriau’s) coupling with an electromagnetic field. Let us consider a
Maxwell (electromagnetic) field F = Fλµ d

λ ∧ dµ satisfying the Maxwell equation
dF = 0. Then we consider the total (joined) 2-form, [2],

ωj = ω + 1
2F = ḋλ ∧ dλ + 1

2Fλµ d
λ ∧ dµ .

We obtain the corresponding total (joined) Poisson 2-vector

Λj = Λ + Λe = ∂̇λ ∧ ∂λ + 1
2Fλµ ∂̇

λ ∧ ∂̇µ .

Assume a function K on T ∗E satisfying

(1.5) 0 = {H,K}j = LXj
H
K = gλρ ẋρ ∂λK −

( 1
2 ∂λg

ρσ ẋρ ẋσ − Fρλ gρσ ẋσ
)
∂̇λK ,

where {, }j is the total (joined) Poisson bracket.
According to [13] functions of the type (1.4) satisfy the equation (1.5) if and

only if

0 =
∑
k≥1

( 1
2 [ḡ,

k−1
K ]σ1...σk + k Fρ

σ1
k

Kρσ2...σk) ẋσ1 . . . ẋσk .(1.6)
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Corollary 1.1. For a function K =
0
K +

1
Kλ ẋλ two identities have to be satisfied

0 = gρσ1 ∂ρ
0
K + Fρ

σ1
1
Kρ , 0 = [ḡ ,

1
K] ,

which implies that
1
K is a Killing vector field and the identity d

0
K +

1
K yF = 0 is

satisfied. Then
1
K is an infinitesimal symmetry of F̂ , i.e. L 1

K
F = 0. Moreover,

X j
K =

1
Kλ ∂λ − (∂λ

0
K + ∂λ

1
Kρ ẋρ + Fρλ

1
Kρ) ∂̇λ =

1
Kλ ∂λ − ∂λ

1
Kρ ẋρ ∂̇

λ

which is the flow lift T ∗
1
K of the vector field

1
K. �

Corollary 1.2. For a function function
k

K =
k

Kλ1...λk ẋλ1 . . . ẋλk , k ≥ 2, we get

0 = [ḡ,
k

K] , 0 = Fρ
(σ1

k

Kσ2...σk)ρ ,

i.e.
k

K is a Killing-Maxwell k-vector field, [2]. Moreover, the corresponding vector
field X j

k

K

is not projectable on spacetime and the infinitesimal symmetry of H is
hidden. �

2. Infinitesimal symmetries of the gravitational contact phase
structure

In what follows we shall consider a phase space of a general relativistic test
particle considered as the 1-jet space of motions. Our theory is explicitly independent
of scales, so we introduce the spaces of scales in the sense of [10]. Any tensor field
carries explicit information on its scale dimension. We assume the following basic
spaces of scales: the space of time intervals T , the space of lengths L and the
space of mass M. We assume the speed of light c ∈ T∗ ⊗L and the Planck constant
~ ∈ T∗ ⊗ L2 ⊗M as the universal scales. We denote as u0 ∈ T∗ a base.

2.1. Classical phase space. Now we assume the metric to be scaled, i.e. g : E →
L2 ⊗ (T ∗E � T ∗E) . A spacetime chart is defined to be a chart (xλ) ≡ (x0, xi) ∈
C∞(U , IR × IR3), U ⊂ E is open, of E , which fits the orientation of spacetime
and such that the vector field ∂0 is timelike and time oriented and the vector fields
∂1, ∂2, ∂3 are spacelike. Greek indices λ, µ, . . . will span spacetime coordinates,
while Latin indices i, j, . . . will span spacelike coordinates.

For a particle with mass m it is very convenient to use the re-scaled metric
G = m

~ g : E → T⊗ (T ∗E � T ∗E), G0
λµ = m

~0
gλµ, and the associated contravariant

re-scaled metric Ḡ = ~
m ḡ : E → T∗ ⊗ (TE � TE), Gλµ0 = ~0

m gλµ.
We assume time to be a one-dimensional affine space T associated with the vector

space T̄ = T⊗ R. A motion is defined to be a 1-dimensional timelike submanifold
s : T ↪→ E . The 1st differential of the motion s is defined to be the tangent map
ds : TT = T × T̄→ TE.

We assume as phase space the open subspace J1E ⊂ J1(E, 1) consisting of
all 1-jets of motions. So elements of J1xE are classes of non-parametrized curves
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which have in a point x ∈ E the same tangent line lying inside the light cone,
[8]. π1

0 : J1E → E is a fibred manifold but NOT an affine bundle! The velocity of
a motion s is defined to be its 1–jet j1s : T → J1(E, 1). For each 1-dimensional
submanifold s : T ↪→ E and for each x ∈ T , we have j1s(x) ∈ J1E if and only if
ds(x)(u) ∈ Ts(x)E is timelike, where u ∈ T.

Any spacetime chart (x0, xi) is related to each motion s which means that s
can be locally expressed by (x0, xi = si(x0)). Then we obtain the induced fibred
coordinate chart (x0, xi, xi0) on J1E such that xi0 ◦ s = ∂0s

i. Moreover, there exists
a time unit function T → T such that the 1st differential of s, considered as the
map ds : T → T̄∗ ⊗ TE, is normalized by g(ds, ds) = −c2, for details see [8].

We shall always refer to the above fibred charts.
We define the contact map to be the unique fibred morphism d : J1E → T̄∗⊗TE

over E , such that d ◦ j1s = ds, for each motion s . We have g (d,d) = −c2. The
coordinate expression of d is

(2.1) d = c α0 (∂0 + xi0 ∂i) , where α0 := 1/
√
|g00 + 2 g0j x

j
0 + gij xi0 x

j
0| .

We define the time form to be the fibred morphism τ = − 1
c2 g

[(d) : J1E →
T⊗T ∗E, considered as the scaled horizontal 1-form of J1E. We have the coordinate
expression

(2.2) τ = τλ d
λ = −α

0

c (g0λ + giλ x
i
0) dλ .

Note 2.1. In what follows it is very convenient to use the following notation
δ̆iλ = δiλ − xi0 δ0

λ and δ̆µ0 = δµ0 + δµp x
p
0. Then d = c α0 δ̆µ0 ∂µ and τ = −α

0

c ğ0λ d
λ,

where ğ0λ = gµλ δ̆
µ
0 . �

Let V J1E ⊂ TJ1E be the vertical tangent subbundle over E. The vertical pro-
longation of the contact map yields the mutually inverse linear fibred isomorphisms
ντ : J1E → T⊗ V ∗τ E ⊗ V J1E and ν−1

τ : J1E → V ∗J1E ⊗ T∗ ⊗ VτE ,
where VτE = ker τ ⊂ TE, with coordinate expressions

ντ = 1
c α0 δ̆

i
λ d

λ ⊗ ∂0
i , ν−1

τ = c α0 di0 ⊗
(
∂i − c α0τi δ̆

λ
0 ∂λ

)
.

2.2. Infinitesimal symmetries of the gravitational contact phase struc-
ture. For a particle with mass m we can unscale the time 1-form and obtain
a contact 1-form τ̂ = mc2

~ τ = τ̂λ d
λ, where τ̂λ = −mcα0

~ ğ0λ. So the metric g
defines on the phase space J1E the gravitational contact structure (−τ̂ ,Ωg), where
Ωg = −dτ̂ . Then we have the dual Jacobi pair (−γ̂g,Λg) given by the Reeb vector
field −γ̂g and the 2-vector field Λg, [8].

We define an infinitesimal symmetry of the gravitational contact phase structure
to be a phase vector field X on J1E which is a symmetry of τ̂ , i.e. LX τ̂ = 0. By
naturality we have LXΩg = 0, LX γ̂g = [X, γ̂g] = 0 and LXΛg = [X,Λg] = 0. Accor-
ding to [5] any infinitesimal symmetry of the pair (−τ̂ ,Ωg) is the Hamilton-Jacobi
lift
(2.3) X = d(τ̂(X))]g + τ̂(X) γ̂g
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of the phase function τ̂(X), where X = Tπ1
0(X) : J1E → TE is a generalized vector

field in the sense of [12] such that γ̂g · (τ̂(X)) = 0. So, a generalized vector field X
has to satisfy the following conditions:

1. (Projectability condition) The Hamilton-Jacobi lift (2.3) of the phase function
τ̂(X) projects on X.

2. (Conservation condition) The phase function τ̂(X) is conserved, i.e.
γ̂g · (τ̂(X)) = 0 .

The following results were proved in [5].

Theorem 2.1. Let X = Xλ ∂λ : J1E → TE, Xλ ∈ C∞(J1E), be a generalized
vector field, then the following assertions are equivalent:

1. The Hamilton-Jacobi lift (2.3) projects on X.
2. The vertical prolongation

V X : V J1E → V TE = TE ⊕ TE
has values in the kernel of τ̂ .

3. In coordinates
(2.4) ğ0ρ ∂

0
jX

ρ = 0 . �

Lemma 2.2. For generalized vector fields X and Y satisfying the projectability
condition we have
(2.5) {τ̂(X), τ̂(Y )}g + τ̂(X) γ̂g · (τ̂(Y ))− τ̂(Y ) γ̂g · (τ̂(X)) = τ̂([X,Y ]) . �

Remark 2.1. Let us remark that on the left hand side of (2.5) there is the Jacobi
bracket of functions τ̂(X) and τ̂(Y ). �

Theorem 2.3. Let X be a generalized vector field satisfying the projectability
condition. Then the following assertions are equivalent:

1. The Hamilton-Jacobi lift (2.3) is an infinitesimal symmetry of the gravitational
contact phase structure.

2. The phase function τ̂(X) is conserved, i.e. γ̂g · τ̂(X) = 0.
3. The vector field [γ̂g, X] is in ker τ̂ .
4. In coordinates

0 = δ̆ρ0 δ̆
σ
0 (gρω ∂σXω + 1

2 X
ω ∂ωgρσ) .(2.6) �

Corollary 2.4. For generalized vector fields X and Y satisfying the projectability
and the conservation conditions we have
(2.7) {τ̂(X), τ̂(Y )} = τ̂([X,Y ]) .

Moreover, the phase function τ̂([X,Y ]) is conserved. �

Theorem 2.5. The Lie algebra of infinitesimal symmetries of the gravitational
contact phase structure is formed by the Hamilton-Jacobi lifts of phase functions
τ̂(X), where generalized vector fields X satisfy the projectability and the conserva-
tion conditions (2.4) and (2.6).
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Moreover, if X factorises through a spacetime vector field, then the corresponding
infinitesimal symmetry is projectable and it is the jet flow lift J1X. If X is a
generalized vector field which is not factorisable through a spacetime vector field,
then the corresponding infinitesimal symmetry is hidden. �

2.3. Infinitesimal symmetries of the gravitational contact phase struc-
ture generated by Killing multi-vector fields. In [5] it was proved that a

symmetric k-vector field
k

K, k ≥ 1, admits generalized vector field satisfying the
projectability condition. Such generalized vector fields are given by

(2.8) X[
k

K] = k τ̂ y . . . y τ̂ y︸ ︷︷ ︸
(k−1)−times

k

K − (k − 1)
k

K(τ̂ , . . . , τ̂) d̂ : J1E → TE ,

where d̂ = ~
mc2 d. Then we obtain the induced phase function

τ̂
(
X[

k

K]
)

=
k

K(τ̂) :=
k

K(τ̂ , . . . , τ̂) =
k

Kλ1...λk τ̂λ1 . . . τ̂λk .

Theorem 2.6. The phase function
k

K(τ̂) is conserved with respect to the gravita-

tional Reeb vector field, i.e. γ̂g ·
k

K(τ̂) = 0, if and only if
k

K is a Killing k-vector
field. �

Remark 2.2. Let
0
K be a spacetime function. Then γ̂g.

0
K = 0 if and only if

0
K is

a constant. �

Theorem 2.7. The Hamilton-Jacobi lift of a phase function

(2.9) K =
0
K +

∑
k≥1

k

K(τ̂),

is an infinitesimal symmetry of the gravitational contact phase structure (−τ̂ ,Ωg)

if and only if
0
K is a constant and

k

K, k ≥ 1, are Killing k-vector fields. �

Remark 2.3. For a Killing vector field
1
K the Hamilton–Jacobi lift of τ̂(

1
K)

coincides with the jet flow lift J1
1
K and the corresponding infinitesimal symmetry

is projectable on spacetime. For k ≥ 2 the corresponding infinitesimal symmetry is
hidden. �

Remark 2.4. For a constant
0
K and Killing k-vector fields

k

K, k ≥ 1, the conserved
phase function of the type (2.9) admits the infinitesimal symmetry

X[K] =
0
K γ̂ +

∑
k≥1

X[
k

K]

which projects on the generalized vector field

X[K] =
( 0
K −

∑
k≥2

(k − 1)
k

K(τ̂)
)
d̂ +

1
K +

∑
k≥2

k τ̂ y . . . y τ̂ y︸ ︷︷ ︸
(k−1)−times

k

K
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satisfying the projectability and the conservation conditions. �

2.4. Comparison with infinitesimal symmetries of the kinetic energy
function. Suppose the morphism

−τ̂ : J1E −→ T ∗E .

over E. In coordinates we have

xλ = xλ , ẋλ = −τ̂λ = mcα0

~ ğ0λ .

Remark 2.5. Let us note that the image of the mapping −τ̂ is the subset of T ∗E
given by elements satisfying the condition

Ĝλµ ẋλ ẋµ = −1 ,

where Ĝ = ~2

m2 c2 ḡ is the unscaled metric. �

Lemma 2.8. Let K be a constant of motion on T ∗E, i.e. XH ·K = 0 , then its
pull–back −τ̂∗(K) is a conserved function, i.e. γ̂g · τ̂∗(K) = 0 .

Proof. First, it is easy to see that we have

−Teτ̂(γ̂g) = XH(τ̂(e)) ,

where e ∈ J1E and XH is the vector field (1.2).
Now,

γ̂g · τ̂∗(K) = i
γ̂gdτ̂

∗(K)
= i

γ̂g τ̂
∗(dK) = dK(T τ̂(γ̂g)) = −dK(XH) = −XH ·K .�

Now, let us assume a function (1.4) on T ∗E. The above function is a constant

of motion if and only if
0
K(x) is a constant and

k

K(x), k ≥ 1, are Killing k-vector
fields. The pull-back of the function (1.4) is the phase function (2.9) which is a
function conserved by the gravitational Reeb vector field. Let us note that in [5]
the conserved functions of the type (2.9) were obtained in a different way by using
generalized vector fields (2.8).

By Lemma 2.8 we get the following diagram

(T ∗E, ω) constants of motion K, {H,K} = 0
Hamiltonian

lift
- ISs of H

���

Killing multi-vectors

@@R
(J1E,−τ̂ ,Ωg) conserved functions, γ̂g · (−τ̂∗(K)) = 0

−τ̂∗

? Hamilton-Jacobi
lift

- ISs of (−τ̂ ,Ωg)

For Killing vector fields we obtain in both cases projectable infinitesimal sym-
metries which are obtained by the flow lifts. For Killing k-vector fields, k ≥ 2, the
corresponding infinitesimal symmetries are hidden.
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3. Infinitesimal symmetries of the total
almost-cosymplectic-contact phase structure

We assume the total (joined) almost-cosymplectic-contact structure (−τ̂ ,Ωj) on
the phase space given naturally by the metric and an electromagnetic field.

3.1. Total almost-cosymplectic-contact phase structure. We assume an
electromagnetic field to be a closed scaled 2-form on E

F : E → (L1/2 ⊗M1/2)⊗
2∧
T ∗E .

Given a particle with charge q ∈ T−1 ⊗ L3/2 ⊗M1/2 the rescaled electromagnetic
field F̂ = q

~ F can be incorporated into the geometrical structure of the phase
space, i.e. the gravitational form. Namely, we define the total (joined) phase 2-form

(3.1) Ωj := Ωg + Ωe = Ωg + 1
2 F̂ : J1E →

2∧
T ∗J1E.

The pair (−τ̂ ,Ωj) is almost-cosymplectic-contact, i.e. it is regular and and the
2–form Ωj is closed, [9]. Then the dual almost-coPoisson-Jacobi pair is (−γ̂j,Λj).
Here γ̂j = ~

mc2 (γg + γe), where
γe : J1E → T∗ ⊗ V J1E

with the coordinate expression

(3.2) γe = −Ğiλ0 δ̆ρ0 F̂ρλ u
0 ⊗ ∂0

i ,

Ğiλ0 = δ̆iµG
µλ
0 . Further, Λj = Λg + Λe, where

(3.3) Λe = 1
2 (c0α0)2 Ğ

iλ
0 Ğjµ0 F̂λµ ∂

0
i ∧ ∂0

j .

3.2. Infinitesimal symmetries of the total almost-cosymplectic-contact
phase structure. We define a phase infinitesimal symmetry of the total almost-co-
symplectic-contact phase structure to be a vector field X on J1E such that: (1)
LX τ̂ = 0; (2) LXΩj = 0.

Remark 3.1. The conditions (1) and (2) are equivalent to [X, γ̂j] = 0 and
[X,Λj] = 0. �

Lemma 3.1. A phase vector field X is an infinitesimal symmetry of Ωj if and
only if it is of the form
(3.4) X = df ]j + h γ̂j ,

where f is a conserved phase function, i.e. γ̂j · f = 0, and h = τ̂(X), X = Tπ1
0(X).

Proof. We have the splitting TJ1E = ker τ̂ ⊕ 〈γ̂j〉, i.e. X = X̃ + h γ̂j, where
τ̂(X̃) = 0 and h is a phase function. Then from τ̂(γ̂j) = 1 we have h = τ̂(X).

Further the phase 2-form Ωj is closed, then from i
γ̂jΩj = 0 we obtain 0 =

LXΩj = di
X̃

Ωj, which implies locally that i
X̃

Ωj = df for a phase function f , i.e.
X̃ = df ]j. Moreover, γ̂j · f = i

γ̂jdf = i
γ̂jiX̃Ωj = −i

X̃
i
γ̂jΩj = 0. �
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Theorem 3.2. A phase vector field (3.4), where where f is a conserved phase
function, i.e. γ̂j · f = 0, and h = τ̂(X), X = Tπ1

0(X), is an infinitesimal symmetry
of τ̂ if and only if f is of the form

(3.5) f = τ̂(X) + f̆

for a generalized vector field X and a spacetime function f̆ ∈ C∞(E) such that

(3.6) df̆ = X y F̂ .

Proof. By Lemma 3.1 infinitesimal symmetries of (−τ̂ ,Ωj) are of the form (3.4),
where γ̂j.f = γ̂g · f + γ̂e.f = 0, and h = τ̂(X). If X is an infinitesimal symmetry of
τ̂ then by [4]

(3.7) − idf]jΩg − h i
γ̂eΩg + dh = 0 .

But
i
γ̂eΩg = −d̂ y F̂

and

idf]jΩg = df + 1
c0 α0 Ğ

iλ
0 ∂0

i fF̂λµ d
µ = df + (G] ◦ ντ )(dV f) y F̂ .

which follows from

(Ω[g ◦ Λ]g)(df) = df − (γ̂g · f) τ̂ = df + (γ̂e · f) τ̂ ,

(Ω[g ◦ Λ]e)(df) = −(γ̂e · f) τ̂ + 1
c0 α0 Ğ

iλ
0 ∂0

i fF̂λµ d
µ .

Then (3.7) reads as

(3.8) d(h− f) = −h d̂ y F̂ + (G] ◦ ντ )(dV f) y F̂ .

Now, if we put τ̂(X) = τ̂(X) = h, then we can rewrite (3.8) as

df = d(τ̂(X)) + τ̂(X) d̂ y F̂ − (G] ◦ ντ )(dV f) y F̂(3.9)

= d(τ̂(X))−
(
(α0)2ğ0ρX

ρ δ̆λ0 + 1
c0 α0 Ğ

iλ
0 ∂0

i f
)
F̂λµ d

µ

which implies that

(3.10) ∂0
i f = ∂0

i τ̂(X) = −c0 α
0(Ğ0

iρX
ρ + Ğ0

0ρ ∂
0
iX

ρ) ,

where Ğ0
iρ = G0

iρ + (α0)2 ğ0i Ğ
0
0ρ, and we can rewrite (3.9), by using the identity

Ğiλ0 Ğ0
iρ = δλρ + (α0)2 ğ0ρ δ̆

λ
0 , as

df = d(τ̂(X)) +
(
Xλ + Ğiλ0 Ğ0

0ρ ∂
0
iX

ρ
)
F̂λµ d

µ .(3.11)

If we consider the condition that the vector field (3.4), where df is given by (3.11),
projects on X which is equivalent with (2.4) we get

df = d(τ̂(X)) +Xλ F̂λµ d
µ = d(τ̂(X)) +X y F̂ .(3.12)

So we get (3.5), where f̆ ∈ C∞(E) such that (3.6) is satisfied. �
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Theorem 3.3. All phase infinitesimal symmetries of the total phase structure are
vector fields of the type

(3.13) X = d(τ̂(X) + f̆)]j + τ̂(X) γ̂j

where X is a generalized vector field and f̆ ∈ C∞(E) satisfying the following
conditions:

1) df̆ = X y F̂ .
2) (Projectability condition) The vector field (3.13) projects on X.
3) (Conservation condition) The phase function τ̂(X) + f̆ is conserved, i.e.

γ̂j · (τ̂(X) + f̆) = 0.

Proof. It follows from Lemma 3.1 and Theorem 3.2. �

Remark 3.2. Let us note that to find a pair (X, f̆) satisfying the projectability
condition 2) of the above Theorem 3.3, it is sufficient to find a generalized vector
field satisfying the projectability condition (2.4) of Theorem 2.1. It follows from
the fact that df̆ ]j is a vertical vector field.

Further, if the condition 1) and 2) are satisfied, then the conservation condition
γ̂j · (τ̂(X) + f̆) = 0 is equivalent with the conservation condition given by (2.6) in
Theorem 2.3 which follows from γ̂g · f̆ = −γ̂e · τ̂(X). �

Lemma 3.4. Let (X, f̆) and (Y , h̆) be pairs of generalized vector fields and spa-
cetime functions such that the projectability condition of Theorem 3.3 is satisfied.
Let X and Y are phase vector fields given by (3.13). Then

(3.14) τ̂([X,Y ]) = τ̂([X,Y ]) = c0 α
0 Ğ0

0λ (Xρ ∂ρY
λ − Y ρ ∂ρXλ) .

Proof. For a pair (X, f̆) satisfying the projectability condition (2.4) we obtain

X = Xλ ∂λ − Ğiρ0
[
− 1
c0 α0 ∂ρf̆(3.15)

+Xσ ∂σĞ
0
0ρ + Ğ0

0σ ∂ρX
σ + 1

c0 α0X
σ F̂σρ

]
∂0
i .

The same expression we have for a pair (Y , h̆) which implies Lemma 3.4. �

Remark 3.3. Let us note that if, moreover, the condition (3.6) is satisfied, then
the vector field (3.15) is reduced to

X = Xλ ∂λ − Ğiρ0
[
Xσ ∂σĞ

0
0ρ + Ğ0

0σ ∂ρX
σ
]
∂0
i .(3.16) �

Lemma 3.5. Let (X, f̆) and (Y , h̆) be pairs of generalized vector fields and space-
time functions satisfying the projectability condition of Theorem 3.3. Then

{τ̂(X), τ̂(Y )}j = τ̂
(
[X,Y ]

)
− τ̂(X) γ̂g · τ̂(Y ) + τ̂(Y ) γ̂g · τ̂(X)(3.17)

+ 1
2 F̂ (X,Y )− 1

2 τ̂(X) F̂ (d̂, Y ) + 1
2 τ̂(Y ) F̂ (d̂, X) ,

{τ̂(X) , h̆}j = X · h̆− τ̂(X) d̂ · h̆ ,(3.18)

{f̆ , h̆}j = 0 .(3.19)
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Proof. We have for any phase functions f , h

{f, h}j = 1
c0 α0

[
Ğpρ0 (∂ρf ∂0

ph− ∂0
pf ∂ρh)

+ Ğiρ0 Ğjσ0 (∂σĞ0
0ρ − ∂ρĞ0

0σ + 1
c0 α0 F̂ρσ) ∂0

i h ∂
0
j f
]
,

and, for generalized vector fields X, Y and spacetime functions f̆ and h̆ satisfying
the projectability condition (2.4), we obtain

{τ̂(X), τ̂(Y )}j = c0 α
0 [Ğ0

0λ (Y ρ ∂ρXλ −Xρ ∂ρY
λ)

+ (α0)2 Ğ0
0µ Y

µ (ğ0λ δ̆
ρ
0 ∂ρX

λ + 1
2 X

λ ∂λĝ00)

− (α0)2 Ğ0
0λX

λ (ğ0µ δ̆
ρ
0 ∂ρY

µ + 1
2 Y

µ ∂µĝ00)

+ 1
c0 α0 F̂λµX

λ Y µ − α0

c0
δ̆ρ0 (ğ0λ F̂ρµ − ğ0µ F̂ρλ)Xλ Y µ

]
= τ̂

(
[X,Y ]

)
− τ̂(X) γ̂g · τ̂(Y ) + τ̂(Y ) γ̂g · τ̂(X)

1
2 F̂ (X,Y )− 1

2 τ̂(X) F̂ (d̂, Y ) + 1
2 τ̂(Y ) F̂ (d̂, X) ,

{τ̂(X) , h̆}j = Xρ ∂ρh̆+ (α0)2 ğ0σX
σ δ̆ρ0 ∂ρh̆

= X.h̆− τ̂(X) d̂ · h̆ ,

{f̆ , h̆}j = 0 ,

where ĝ00 = δ̆λ0 δ̆
µ
0 gλµ, which follows from Lemma 3.4 and

τ̂(Y ) (γ̂g · τ̂(X)) = c0 (α0)3 Ğ0
0µ Y

µ
(
ğ0λ δ̆

ρ
0 ∂ρX

λ + 1
2 X

ρ ∂ρĝ00
)
. �

Theorem 3.6. All infinitesimal symmetries of the total almost-cosymplectic-contact
phase structure (−τ̂ ,Ωj) are projectable.

Proof. Let us consider two infinitesimal symmetries of the almost-cosymplectic-con-
tact phase structure (−τ̂ ,Ωj)

X = d(τ̂(X) + f̆)]j + τ̂(X) γ̂j , Y = d(τ̂(Y ) + h̆)]j + τ̂(Y ) γ̂j ,

where the pairs (X, f̆) and (Y , h̆) satisfy the conditions 1), 2) and 3) of Theorem
3.3. Then the Lie bracket [X,Y ] is also an infinitesimal symmetry of (−τ̂ ,Ωj). By
[5] (Lemma 2.5) we have

[X,Y ] = d{τ̂(X) + f̆ , τ̂(Y ) + h̆}]j +
(
{τ̂(X) + f̆ , τ̂(Y )}j

− {τ̂(Y ) + h̆, τ̂(X)}j + Ωg(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j)
)
γ̂j .

But [X,Y ] is an infinitesimal symmetry of (−τ̂ ,Ωj) if and only if the difference

{τ̂(X) + f̆ , τ̂(Y ) + h̆}j −
(
{τ̂(X) + f̆ , τ̂(Y )}j − {τ̂(Y ) + h̆, τ̂(X)}j

+ Ωg(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j)
)

is a spacetime function. The above difference is

−{τ̂(X), τ̂(Y )}j − Ωg(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j) .(3.20)
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But Ωg = Ωj − Ωe. Then from the duality and

Tπ1
0(d(τ̂(X) + f̆)]j) = X − τ̂(X) d̂

we get

Ωj(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j) = −{τ̂(X) + f̆ , τ̂(Y ) + h̆}j ,

Ωe(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j) = 1
2 F̂ (X − τ̂(X) d̂, Y − τ̂(Y ) d̂)

which implies

Ωg(d(τ̂(X) + f̆)]j, d(τ̂(Y ) + h̆)]j)

=− {τ̂(X) + f̆ , τ̂(Y ) + h̆}j − 1
2 F̂ (X,Y ) + 1

2 τ̂(X) F̂ (d̂, Y )

+ 1
2 τ̂(Y ) F̂ (X, d̂) .

Then (3.20) is

{τ̂(X) , h̆}j + {f̆ , τ̂(Y )}j + 1
2 F̂ (X,Y )− 1

2 τ̂(X) F̂ (d̂, Y )− 1
2 τ̂(Y ) F̂ (X, d̂)

and, from (3.18), it can be rewritten as

X · h̆− τ̂(X) d̂ · h̆− Y · f̆ + τ̂(Y ) d̂ · f̆ + 1
2 F̂ (X,Y )

− 1
2 τ̂(X) F̂ (d̂, Y )− 1

2 τ̂(Y ) F̂ (X, d̂) .

Finally, from (3.6) and Y yX y F̂ = 1
2 F̂ (X,Y ), we get that the difference is equal

to − 1
2 F̂ (X,Y ) which is a spacetime function if and only if X and Y are spacetime

vector fields. So all infinitesimal symmetries of the almost-cosymplectic-contact
structure (−τ̂ ,Ωj) are projectable and there are no nonprojectable (hidden) sym-
metries. �

Remark 3.4. Let us note that projectable infinitesimal symmetries of of the
almost-cosymplectic-contact phase structures were classified in [11]. It was proved
that all projectable infinitesimal symmetries are vector fields of the type (3.13)
where X is a spacetime Killing vector field and f̆ is a spacetime function such that
the condition (3.6) is satisfied. In this case the vector field (3.13) reduces to (3.16).
But if X is a Killing vector field, then LXḠ = 0 which in coordinates reads as

Xσ ∂σG
0
λµ +G0

λσ ∂µX
σ +G0

µσ ∂λX
σ = 0 ,

i.e.
Xσ ∂σĞ

0
0ρ + Ğ0

0σ ∂ρX
σ = −G0

ρσ δ̆
ω
0 ∂ωX

σ

which implies that the vector field (3.16) can be rewritten as

X = Xλ ∂λ + Ğiρ0 G0
ρσ δ̆

ω
0 ∂ωX

σ ∂0
i = Xλ ∂λ + δ̆iσ δ̆

ω
0 ∂ωX

σ ∂0
i(3.21)

= Xλ ∂λ +
(
∂0X

i + xp0 ∂pX
i − xi0 ∂0X

0 − xi0 x
p
0 ∂pX

0) ∂0
i

which is the 1-jet flow lift of X to J1E. �
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3.3. Conserved functions and Killing-Maxwell multi-vector fields. Now,

let us consider a phase function (2.9) given by a spacetime function f̆ =
0
K and

symmetric multi-vector fields
k

K, k ≥ 1. If we consider the phase vector field

X = dK]j +
∑
k≥1

k

K(τ̂) γ̂j

then this vector field coincides with the vector field (3.13) for the generalized vector
field

X[K] = Tπ1
0
(
dK]j +

∑
k≥1

k

K(τ̂) γ̂j
)

=
1
K −

∑
k≥2

(k − 1)
k

K(τ̂) d̂ +
∑
k≥2

k τ̂ y . . . y τ̂ y︸ ︷︷ ︸
(k−1)−times

k

K .(3.22)

Really, we have τ̂(X[K]) =
∑
k≥1

k

K(τ̂). Such generalized vector field satisfies the
projectability condition and we have to find conditions for the function (2.9) to be
conserved by the joined Reeb vector field, i.e. γ̂j.K = 0.

Lemma 3.7. We have

γ̂e ·
0
K = 0 ,

γ̂e.
k

K(τ̂) = −k ~2

m2 c2

k

Kρλ1...λk−1 F̂λkρ τ̂λ1 . . . τ̂λk , k ≥ 1 ,

where F̂λkρ = gσλk F̂σρ.

Proof. We have

γ̂e.τ̂ρ = α0 ~
mc

δ̆σ0 F̂σρ

which implies, with α0 ~
mc δ̆

σ
0 = − ~2

m2 c2 g
σω τ̂ω,

γ̂e ·
k

K(τ̂) = k
k

Kρλ1...λk−1 (γ̂e.τ̂ρ) τ̂λ1 . . . τ̂λk−1

= −k ~2

m2 c2

k

Kρλ1...λk−1 F̂σρ g
σλk τ̂λ1 . . . τ̂λk . �

Lemma 3.8. Let us suppose a phase function B = Bλ1...λk τ̂λ1 . . . τ̂λk , k ≥ 1,
Bλ1...λk ∈ C∞(E). Then B = 0 if and only if Bλ1...λk = 0 for all λ1, . . . , λk.

Proof. B = 0 if and only if Bλ1...λk gλ1ρ1 . . . gλkρk δ̆
ρ1
0 . . . δ̆ρk0 = 0 which is a

polynomial function on fibres of J1E. Then Bλ1...λk gλ1ρ1 . . . gλkρk = 0 for all
indices ρ1, . . . , ρk and from regularity of the metric we get Lemma 3.8. �
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Theorem 3.9. A phase function (2.9) is conserved by the joined Reeb vector field,
i.e. γ̂j ·K = 0, if and only if

gρλ ∂ρ
0
K +

1
Kρ F̂λρ = 0 ,(3.23)

∇(λ1
k

Kλ2...λk+1) + (k + 1)
k+1
K ρ(λ1...λk F̂λk+1)

ρ = 0 ,(3.24)
for k = 1, 2, . . . .

Proof. From Lemma 3.7 we have

γ̂j ·K = γ̂g ·K + γ̂e ·K = − ~2

m2 c2

[(
gρλ ∂ρ

0
K +

1
Kρ F̂λρ

)
τ̂λ1

+
∑
k≥1

( 1
2 [ḡ,

k

K]λ1...λk+1 + (k + 1)
k+1
K ρλ1...λk F̂λk+1

ρ

)
τ̂λ1 . . . τ̂λk+1

]
.

From
∇(λ1

k

Kλ2...λk+1) = 1
2 [ḡ,

k

K]λ1...λk+1

and Lemma (3.8) we obtain Theorem 3.9. �

Corollary 3.10. The vector field X[K] = dK]j + h γ̂j, where the phase func-

tion K is given by (2.9) and h = K −
0
K, is an infinitesimal symmetry of the

almost–cosymplectic–contact pair (−τ̂ ,Ωj) if and only if the conditions (3.23) and

(3.24) are satisfied and d
0
K = X[K] y F̂ . �

Remark 3.5. Let us assume a (special) phase function K =
0
K +

1
K(τ̂) . Then the

conditions (3.23) and (3.24) are reduced to

∂ρ
0
K −

1
Kσ F̂σρ = 0 , ∇(λ1

1
Kλ2) = 0

and we obtain the result of [11], i.e.
1
K is a Killing vector field and

0
K and

1
K

are related by the formula d
0
K =

1
K y F̂ which implies that

1
K is an infinitesimal

symmetry of F̂ . Moreover, the corresponding infinitesimal symmetry is the flow

lift J1
1
K which projects on

1
K, see Remark 3.4. Let us note that in this case the

condition (3.6) coincides with the condition (3.23). �

Remark 3.6. Let us assume a phase function K =
k

K(τ̂) , k ≥ 2. Then the
conditions (3.23) and (3.24) are reduced to

(3.25) ∇(λ1
k

Kλ2...λk+1) = 0 ,
k

Kρ(λ1...λk−1 F̂λk)
ρ = 0

and we obtain that
k

K is a Killing-Maxwell k-vector field, [2]. The condition (3.6)
has the form X[K] y F̂ = 0 which from (3.22) is equivalent with

(3.26) 0 =
∑
k≥2

(
(k − 1)

k

K(τ̂) d̂ y F̂ − k (τ̂ y . . . y τ̂ y︸ ︷︷ ︸
(k−1)−times

k

K) y F̂
)
.
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Now, from d̂ = Ĝ]τ̂ and Lemma 3.8 we obtain the coordinate expression of (3.26)
in the form

(3.27)
k

K(λ1...λk F̂λk+1)
µ = 0 ,

k

Kρλ1...λk−1 F̂ρµ = 0 .
For a nonvanishing k-multi vector field the equations (3.27) are satisfied only for
F̂ ≡ 0 but in this case the geometrical phase structure is contact. For a nonvanishing
electromagnetic field the equations (3.27) are satisfied only for vanishing k-multi
vector field and we have no induced infinitesimal hidden symmetry. �

Remark 3.7. As an example let us assume the canonical Killing-Maxwell 2-vector

field
2
Kλµ = Ĝλµ for the unscaled metric, [13]. Then the above conditions (3.27)

are in the form
ĜρλF̂ρµ = 0 , Ĝ(λ1λ2 F̂λ3)

µ = 0 .
which implies F ≡ 0 . �

3.4. Comparison with infinitesimal symmetries of the kinetic energy
function.

Lemma 3.11. Let K be a function on T ∗E constant of motion, i.e. X j
H ·K = 0,

then its pull-back −τ̂∗(K) is a conserved function, i.e. γ̂j · τ̂∗(K) = 0 .

Proof. The proof is the same as the proof of Lemma 2.8 by observing that
−Teτ̂(γ̂e) = F̂ ρλ τ̂ρ(e) ∂̇λ , e ∈ J1E ,

and by using equation (1.5). �

If we consider the electromagnetic field, then in both approaches we get the same
results for projectable infinitesimal symmetries, see Corollary 1.1 and Remark 3.5.
On the other hand, Killing-Maxwell multi-vector fields of rank ≥ 2 admits hidden
infinitesimal symmetries of H on T ∗E. On J1E Killing-Maxwell multi-vector fields
admit functions conserved by the Reeb vector field of the joined structure but to
obtain infinitesimal symmetries of the joined almost-cosymplectic-contact structure
we need a further strong condition (3.26) which implies either F ≡ 0 and the
structure is reduced to the gravitational one or there are no hidden infinitesimal
symmetries.

We can summarize the results in the following diagram

(T ∗E, ωj) constants of motion K, {H,K}j = 0 - ISs of H

���

Killing–Maxwell multi-v.f.s projectable ISs of (−τ̂ ,Ωj)

@@R ��
k = 1�

(J1E ,−τ̂ ,Ωj) conserved functions, γ̂j.(−τ̂∗K) = 0

−τ̂∗

?

@@k ≥ 2R
no hidden ISs of (−τ̂ ,Ωj)
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