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Abstraci—At present malicious software or malware has
increased considerably to form a serious threat to Internet
infrastructure. It becomes the major source of most malicious
activities on the Internet such as direct attacks, (distributed)
denial-of-service (DOS) activities and scanning. Infected machines
may join a botnet and can be used as remote attack tools to
perform malicious activities controlled by the botmaster. In this
paper we present our methodology for detecting any connection to
or from malicious IP address which is expected to be command
and control (C&C) server. Our detection method is based on
a blacklist of malicious IPs. This blacklist is formed based on
different intelligence feeds at once. We process the network
traffic and match the source and destination IP addresses of
each connection with IP blacklist. The intelligence feeds are
automatically updated each day and the detection is in the real
time.

Keywords—Cyber attacks, botnet, malicious IP, malware, intru-
sion detection system.

I. INTRODUCTION

At present malicious software or malware has increased
considerably to form a serious threat to Internet infrastructure.
It becomes the major source of most malicious activities on
the Internet such as direct attacks [1], (distributed) denial-
of-service (DOS) activities [2] and scanning [3]. Nowadays
hackers and cyber criminals are not motivated only by curiosity
and fame seeking, they aim for illegal financial profit that
encourages them to build more sophisticated malwares. Sup-
ported by availability of easy-to-use toolkits to create malware,
this issue is likely to remain a challenge to users, governments
and businesses.

By exploiting vulnerabilities of the servers, malware can
be hosted on web servers. The mere visit of a website hosted
on the exploited server causes to the user’s computer to
be infected, particularly when the user’s operating system
and/or internet browser are unpatched [4], this activity is also
referred as a “drive-by attack” and the malware is known
as a “bot malware”. Infected machines may join a botnet
and can be used as remote attack tools to perform malicious
activities controlled by the botmaster. Botnets are networks
established by a group of infected machines, called bots, that
are compromised and controlled by the attackers that called
botmasters [5], [6].

A bot can exploit vulnerable machines through Trojan
insertion or direct exploitation, since it is a self-propagating
application like other worms and viruses. What is different
from previous generations of worms and viruses, bots are able
to create command and control (C&C) channels between the
infected machines and C&C servers [7]. The C&C servers are
controlled by the botmasters and used to instruct and update
the bots.
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Botnet C&C traffic detection is not easy and forms a
challenge for the current intrusion detection systems, because
the volume of this traffic is low. Moreover, it is similar to
normal traffic and follows the same protocol usage [8].

In this paper we present our methodology for detecting any
connection to or from malicious IP address which is expected
to be C&C server. Our detection method is based on a blacklist
of malicious IPs. This blacklist is formed based on different
intelligence feeds at once. Why rely on one vendor feed when
we can use many? No single security team has all the answers.
We process the network traffic and match the source and
destination IP addresses of each connection with IP blacklist.
The intelligence feeds are automatically updated each day and
the detection is in the real time.

The remainder of this paper is organized as follows. Section
2 presents previous related work to malicious IP traffic detec-
tion. Our methodology and implementation of our detection
method are explained in Section 3. Section 4 shows our results
and section 5 concludes the paper.

II. RELATED WORK

For years preventing users from connecting to malicious
servers or websites has depended on blacklists and reputation
systems. Blacklist-based techniques are the most common
solutions to protect both client-side and network-side. Com-
mercial security appliances and DNS block lists can be used
for Network-side filtering (DNSBL) [9], [10], while the current
web browsers contain client-side filtering [11].

Reputation systems are used to deny hosts from connecting
to malicious websites. Reputation depends on different types
of date present in each domain or address. Attributes extracted
from link structures, WHOIS information and domains are
used for reputation criteria. Antonakakis et al. [12] developed
Notos, a dynamic reputation system. The system depends on
many sources like AS information, border gateway protocol
prefixes and DNS zones to gather information. Then, the
collected information is used to model network and zone
behaviors of malicious and benign domains. After that, a
reputation score is calculated for each domain name based on
those models.

Felegyhazi et al. [13] proposed domain-based proactive
blacklisting. It uses name server and registration information to
predict malicious domains based on a small set of other known
malicious domains. Ma et al. [14] presented a supervised
learning approach for categorizing URLs as malicious or
benign. This approach is based on host-based features and
lexical structure of URLs like geographical information and
WHOIS records.
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Chiba et al. [15] proposed a mechanism for detecting
connections related to web-based malware. It is able to prevent
hosts from connecting even to unknown malicious websites
based on attributes extracted from structures of IP addresses.
Based on a machine learning technique, they developed a scal-
able and lightweight detection scheme. Their method benefits
from the empirical observation that IP addresses are more
settled than other metrics such as DNS and URLs. While the
strings that form IP addresses are not often changing, domain
names and URLs are more changeable, i.e., IPv4 address space
is mapped onto 4-bytes strings.

By monitoring only the time-to-live (TTL) value in the
internet protocol (IP) header, a new approach for detecting
malicious packets was proposed by Yamada and Goto [16].
This approach depends on the fact that the usual number of
routers, through which an IP packet passes to a destination
host, is less than 30. Based on their monitoring, they found that
some IP packets have an unusual TTL value that is decreased
by more than 30 increments from the initial TTL value. Special
software, most often, has generated those packets. IP packets
with abnormal TTL values are considered to be malicious.
Some other methods based on machine learning, with deep
packet inspections or numerous signature files, have been
proposed for detecting malicious packets [17], [18].

With regards to botnets, by using a multilayer Feed-
Forward Neural network, an HTTP based botnet detection
system was presented by Kirubavathi et al. [19]. They utilized
some features related to TCP connections for botnet detection.
Those features were extracted in specific time intervals based
on the fact that web-based botnets periodically make a web
request from the C&C web server to be updated and instructed.
They usually do not keep a continuous connection with
the C&C server. Stateful-SBB, a co-evolutionary system for
detecting automatically generated malicious (botnet) domain
names was proposed by Haddadi et al. [20]. They showed that
botnet C&C domain names, which are located in the neiwork
packet payload, could be distinguished by their system.

Francois et al. [21] presented a NetFlow monitoring frame-
work to track communication patterns by using a simple host
dependency model. This framework is able to detect similar
botnet behavioral patterns based on clustering techniques and
linkage analysis. A botnet detection system based on flow in-
tervals was proposed by Zhao et al. [22]. For botnet detection,
some flow attributes were utilized with decision tree classifiers
and Bayesian networks. Those attributes were extracted from
packet headers.

III. METHODOLOGY

In this section we propose our methodology for detecting
any connection to or from malicious IP. Our detection method
is based on a blacklist of malicious IPs. As it is shown
in Figure 1, we process the network traffic and match the
source and destination IP addresses for each connection with IP
blacklist. The blacklist is automatically updated each day based
on different intelligence feeds at once and the detection is in
the real time. We have implemented our detection method on
top of Bro [23], [24], which is a passive, open-source network
traffic analyzer.
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Fig. 1. Methodology of malicious IP traffic detection.

Figure 2 explains the implementation of our detection
method in Bro, first we start processing the network traffic. Bro
is able to reduce the incoming packet stream into a series of
higher-level events, so we can get new_connection event. This
event is generated for every new connection and it is raised
with the first packet of a previously unknown connection.
Through this event we should check both connection sides
(source and destination IPs) to detect if the connection is to
or from malicious IP.

In the first case, detecting if the connection is to malicious
IP, first we check if this connection is established by a host
from our network, therefore we check the source IP address
through is_local_addr function, this function returns true if
an address corresponds to one of the defined local networks,
false if not. Here we should define the subnet of our network.
After that, we check if the destination IP address is in
t_ip_blacklist table, this table contains malicious IPs which
we get them from different intelligence feeds [25], [26], [27],
[28], [291, [301, [31], [32], [33]. This blacklist is automatically
updated each day as it is shown in Figure 3. When a match
is found, that means that the connection is established to a
malicious IP. Before we raise an alert we check if we got
an alert about the same host during the last day, because
we don’t want to send many alerts about the same infected
host during one day, therefore we check if the current IP
(infected host) is existent in 7_suppress_ip_alert table,. this
table contains all detected hosts during the last day. If the
source IP address is not in 7_suppress_ip_alert table, we can
write the following information into blacklist_detection_ip.log:

timestamp = c$start_time
alert_type = ip_alert”
connection = c$id
infected_host = c$id$orig_h
malicious_ip = c$id$resp_h

We send an alert email about malicious IP traffic detection
to RT (Request Tracker) where the network security team can
perform additional forensics and response to it [34].We gener-
ate an event, ip_alert, about malicious IP detection, this event
can be used for alert correlation [35]. We should add the TP
address of the current (infected) host into 7_suppress_ip_alert
table where it will stay for one day to be sure that we will not
get another alert about the same infected host during one day.

In the second case, detecting if the connection is from
malicious IP, we follow the same procedure of the first case
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Fig. 2.

but we pay attention to the source and destination IP addresses
as it is explained in Figure 2.

For automatic update of 7_ip_blacklist table which is used
in our methodology, Figure 3 shows how it is done.
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Fig. 3. Automatic update for IP blacklist.

We start from user crontab file which is configured to run
blacklist_update.sh each day at 3:00 am, this shell script will
connect through Internet to the intelligence feeds and down-
load updated blacklist of malicious IPs into ip_blacklist.1xt file.
Then we have Input Framework which enables us to use the
text file as an input for our methodology which is implemented
on top of Bro, this framework will read ip_blacklist.txt file into
t_ip_blacklist table and this table will be used by event handler
as it is explained above. This automatic update is done without
stopping network traffic live monitor.

IV. EVALUATION AND RESULTS

We used three scenarios to evaluate our methodology. In
the first one, we ran a script initiating connections to malicious
IPs on a computer connected to the monitored network. In
the second scenario, we applied our method on pcap files
which contained malicious TP traffic. In the third scenario,
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we monitored the campus network for hosts connecting to
malicious IPs.

In the first scenario, we installed a script on a user’s
computer of our network. The network was monitored by our
detection method and the script was written to connect to
random malicious IPs from the blacklist. In this scenario, we
focused on the real-time detection feature. Once a malicious
connection is detected, a report is sent to RT by our method.

The test consisted of the following steps. First, a connection
to a randomly picked IP from the blacklist was established and
the connection time was recorded with millisecond precision.
Then, our detection method sent an RT ticket as soon as the
malicious connection was detected. After the RT ticket was
received, we recorded the time of arrival with millisecond
precision. Based on both recorded time we calculated the
detection delay. The average detection delay was 270 ms with
standard deviation of 55 ms. Figure 4 shows the results.

In the second scenario, we applied our methodology on
three pcap files contained malicious IP traffic. These pcap
files were analyzed by the provider, so we used this fact
to set the ground truth. The first pcap file contained traffic
infected by the malware (PizzaHut_Coupon.exe) with MD5
hash 791a02952905¢c0037753700636¢3339 [36]. The infec-
tion was delivered by an email attachment sent by Asprox
botnet which uses phishing emails and sends fake Pizza Hut
emails with the subject line: Free Pizza. The second pcap file
traffic was infected by the malware (Label-CA-Toronto.exe)
with MD5 file hash a6ba2cadc7c6891a5f437b212al8ac52
[37]. The infection was also delivered by Asprox botnet
phishing email, but different malicious IP was involved. The
third pcap file traffic was infected by a malware with MDS5 file
hash dc5c71aef24a5899f63¢3f9c15993697 [38]. The infection
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Fig. 4. Detection delay of our method.

was delivered by drive-by-download attack and five malicious
IPs were involved.

We set up our method that it consumed the pcap files and
produced log files. We applied our detection method on the
peap files and it was successfully able to detect all malicious
IPs which were involved in those infections. Note that we did
not provide the ground truth blacklist to our detection method.
Figures 5, 6, and 7 show part of blacklist_detection_ip.log
produced by our detection method for each pcap file. The log
file contains more information about the malicious connection
than in the figures (like its source and destination ports) but
the figures show only the interesting part of the log.

#fields timestamp alert_type infected_host ~ malicious_ip
#types time string addr addr
1414537682.066774 ip_alert ~ 192.168.56.255 192.168.56.101
1414537713.067728 ip_alert 85.12.29.172  192.168.56.101

#close 2014-11-29-20-40-04

Fig. 5. Part of the log produced by our method for the fist pcap file.

#fields timestamp  alert_type infected_host malicious_ip
#types time string addr addr
1415437682.066018 ip_alert 104.152.888.175 128.13.136.177
1415437674.992953 ip_alert 128.13.136.8 . 128.13.136.177

#close 8514-11-89-85-42-41

Fig. 6. Part of the log produced by our method for the second pcap file.

#fields timestamp  alert_type infected_host malicious_ip
#types time string addr addr
14115553768127325 ip_alert  15. 81678 348147 1478 2181248
14115553518 3. 627 ip_alert  15. 81678 348147 1478 2181248 5
1411555351810920 ip_alert  15. 81678 348147 75813818126
141155513. 816.. 70 ip_alert  15. 81678 348147 9581008 158110
14115551978 72291 ip_alert  15. 81678 348147 99&9878!. 9
#close . 314-11-. 5-. 3-26-. 4

Fig. 7. Part of the log produced by our method for the third pcap file.

978-1-4799-8553-1/15/$31.00 © 2015 IEEE

In the third scenario, we monitored the campus live traffic
for malicious IPs detection. The method was set up to create a
log file of detected malicious IPs. We set up a server hosting
our detection method and passively analyzing the campus live
traffic. The monitoring was performed for one month. We
correlated the list of hosts involved in malicious IP traffic with
results of a malicious domain detection method. As it is shown
in Figure 8, 22 hosts were detected involved in malicious
domain connections and 37 hosts were detected involved in
malicious IP connections. Of these, 14 hosts were detected
involved in both malicious IP and domain connections, which
indicated that they were infected by malware.

40 -
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Number of 22

infected 20 -
hosts 15

10 -
5

Malicious
domain

Malicious
domain and IP
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Fig. 8. Detected hosts by malicious domain and IP detection methods.

Our detection method also sent an alert email about each
malicious IP detection to RT where the network security team
can perform additional forensics and response to it. Figure 9
shows an example of Bro_Malicious_IP ticket which was sent
by email to RT.

Greetings,

the security team CSIRT-MU detected involvement of the IP address
ISR into the following incident:

Incident type: Bro_Malicious_IP

Time of detection: 2014-11-27 18:25:37 +0100
|IP address: FESrE—————

Domain name: ---

Details of this incident can be found at this address:
https://reports.csirt. muni.cz/A4FE72DC-65A8-1C74-8627-5664BE78D342

Best regards,
CSIRT-MU, the security team of Masaryk University
http://www.muni.cz/csirt

Date: Thu, 27 Nov 2014 18:25:55 +0100

Fig. 9. Bro_Malicious_IP ticket.

V. CONCLUSION AND FUTURE WORK

In this paper we presented our methodology for detecting
any connection to or from malicious IP address which is
expected to be C&C server. Our detection method is based
-on a blacklist of malicious IPs. This blacklist is formed based
on different intelligence feeds at once.

For future work, the output of this detection method will
be correlated with the outputs of other detection methods to
raise an alert on APT attack detection.
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