KOLÁČEK, Jan a Ivanka HOROVÁ. Bandwidth matrix selectors for kernel regression. Computational Statistics. HEIDELBERG, GERMANY: SPRINGER HEIDELBERG, 2017, roč. 32, č. 3, s. 1027-1046. ISSN 0943-4062. doi:10.1007/s00180-017-0709-3. |
Další formáty:
BibTeX
LaTeX
RIS
@article{1319858, author = {Koláček, Jan and Horová, Ivanka}, article_location = {HEIDELBERG, GERMANY}, article_number = {3}, doi = {http://dx.doi.org/10.1007/s00180-017-0709-3}, keywords = {multivariate kernel regression; constrained bandwidth matrix; kernel smoothing; mean integrated square error}, language = {eng}, issn = {0943-4062}, journal = {Computational Statistics}, title = {Bandwidth matrix selectors for kernel regression}, url = {http://is.muni.cz/auth/repo/1319858/template_cost.pdf}, volume = {32}, year = {2017} }
TY - JOUR ID - 1319858 AU - Koláček, Jan - Horová, Ivanka PY - 2017 TI - Bandwidth matrix selectors for kernel regression JF - Computational Statistics VL - 32 IS - 3 SP - 1027-1046 EP - 1027-1046 PB - SPRINGER HEIDELBERG SN - 09434062 KW - multivariate kernel regression KW - constrained bandwidth matrix KW - kernel smoothing KW - mean integrated square error UR - http://is.muni.cz/auth/repo/1319858/template_cost.pdf L2 - http://is.muni.cz/auth/repo/1319858/template_cost.pdf N2 - Choosing a bandwidth matrix belongs to the class of significant problems in multivariate kernel regression. The problem consists of the fact that a theoretical optimal bandwidth matrix depends on the unknown regression function which to be estimated. Thus data-driven methods should be applied. A method proposed here is based on a relation between asymptotic integrated square bias and asymptotic integrated variance. Statistical properties of this method are also treated. The last two sections are devoted to simulations and an application to real data. ER -
KOLÁČEK, Jan a Ivanka HOROVÁ. Bandwidth matrix selectors for kernel regression. \textit{Computational Statistics}. HEIDELBERG, GERMANY: SPRINGER HEIDELBERG, 2017, roč.~32, č.~3, s.~1027-1046. ISSN~0943-4062. doi:10.1007/s00180-017-0709-3.
|