Detailed Information on Publication Record
2015
A Hilbert Space Operator Representation of Abelian Po-Groups of Bilinear Forms
JANDA, Jiří and Jan PASEKABasic information
Original name
A Hilbert Space Operator Representation of Abelian Po-Groups of Bilinear Forms
Authors
JANDA, Jiří (203 Czech Republic, belonging to the institution) and Jan PASEKA (203 Czech Republic, guarantor, belonging to the institution)
Edition
International Journal of Theoretical Physics, NEW YORK, Springer, 2015, 0020-7748
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.041
RIV identification code
RIV/00216224:14310/15:00085222
Organization unit
Faculty of Science
UT WoS
000364224200016
Keywords in English
Effect algebra; Generalized effect algebra; Hilbert space; Operator; Unbounded operator; Bilinear form; Singular bilinear form
Změněno: 13/12/2015 08:43, prof. RNDr. Jan Paseka, CSc.
Abstract
V originále
The existence of a non-trivial singular positive bilinear form Simon (J. Funct. Analysis 28, 377-385 (1978)) yields that on an infinite-dimensional complex Hilbert space the set of bilinear forms is richer than the set of linear operators . We show that there exists an structure preserving embedding of partially ordered groups from the abelian po-group of symmetric bilinear forms with a fixed domain D on a Hilbert space into the po-group of linear symmetric operators on a dense linear subspace of an infinite dimensional complex Hilbert spacel (2)(M). Moreover, if we restrict ourselves to the positive parts of the above mentioned po-groups, we can embed positive bilinear forms into corresponding positive linear operators.
Links
EE2.3.20.0051, research and development project |
|