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Many width measures for directed graphs have been proposed 
in the last few years in pursuit of generalizing (the notion of) 
treewidth to directed graphs. However, none of these measures 
possesses, at the same time, the major properties of treewidth, 
namely,

1. being algorithmically useful, that is, admitting polynom-
ial-time algorithms for a large class of problems on 
digraphs of bounded width (e.g. the problems definable 
in MSO1);

2. having nice structural properties such as being (at least 
nearly) monotone under taking subdigraphs and some 
form of arc contractions (property closely related to 
characterizability by particular cops-and-robber games).

We investigate the question whether the search for directed 
treewidth counterparts has been unsuccessful by accident, 
or whether it has been doomed to fail from the beginning. 
Our main result states that any reasonable width measure 
for directed graphs which satisfies the two properties above 
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must necessarily be similar to treewidth of the underlying 
undirected graph.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An intensely investigated field in algorithmic graph theory is the design of graph width 
parameters that satisfy two seemingly contradictory requirements: (1) a large class of 
problems must be efficiently solvable on the graphs of bounded width and (2) graphs of 
bounded width should have a nice, reasonably rich and natural structure.

For undirected graphs, research into width parameters has been extremely success-
ful with several algorithmically useful measures being proposed over the years, chief 
among them being treewidth [43], branchwidth [44] and clique-width [11] (see also [6,25]). 
Many problems that are hard on general graphs turned out to be tractable on graphs 
of bounded treewidth. These results were generalized by Courcelle’s celebrated theorem 
which states that a (very) large class of problems, i.e. the class of all MSO2-definable 
problems, is tractable on graphs of bounded treewidth [9]. Treewidth and branchwidth 
are closely related and their very nice structural properties are well known. Furthermore, 
the tractability of all MSO2 problems closely characterizes the class of graphs of bounded 
treewidth [35].

However, for directed graphs no single known width measure is as successful as 
treewidth is for undirected graphs. We feel the reason for this is that all the currently 
known digraph width measures fail on at least one of the aforementioned conditions (1) 
and (2).

During the last 15 years, many digraph width measures inspired by treewidth were 
introduced, the prominent ones being directed treewidth [29], DAG-width [4,40], and 
Kelly-width [28]. These width measures proved useful for some problems. For instance, 
one can obtain polynomial-time (XP to be more precise, see Section 2) algorithms for
Hamiltonian Path on digraphs of bounded directed treewidth [29] and for Parity 
Games on digraphs of bounded DAG-width [5] and Kelly-width [28]. But there is the 
negative side, too. Hamiltonian Path, for instance, probably cannot be solved [37] on 
digraphs of directed treewidth, DAG-width, or Kelly-width at most k in time O(f(k) ·nc), 
where c is a constant independent of k. Note that Hamiltonian Path can be solved in 
such a running time for undirected graphs of treewidth at most k [9].

Moreover, for the former ones and even new measures DAG-depth and Kenny-
width1 [22], which are much more restrictive than DAG-width; (1) problems such as
Directed Dominating Set, Directed Cut, Oriented Chromatic Number 4,
Max/Min Leaf Outbranching, or k-Path remain NP-complete on digraphs of con-

1 Kenny-width of [22] is a different measure than Kelly-width of [28].
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stant width [22]. In contrast, clique-width and the more recent digraph-width measure 
bi-rank-width [30] look more promising on the algorithmic side: a Courcelle-like [12]
MSO1 theorems exist for digraphs of bounded directed clique-width and bi-rank-width, 
and many other interesting problems can be solved in polynomial time (XP) on digraphs 
of bounded directed clique-width and bi-rank-width [31,21,20]. Yet, (2) the latter mea-
sures are not monotone even under taking subdigraphs. A recent exhaustive survey on 
complexity results for DAG-width, Kelly-width, bi-rank-width, and other digraph-width 
measures, is contained in aforementioned [22].

Contribution. In this paper, we show (under well-established complexity assumptions) 
that any reasonable digraph width measure that is algorithmically useful (powerful; Def-
inition 3.1) and is closed under a notion of directed topological minors (Definition 4.4) 
must upper-bound the treewidth of the underlying undirected graph. In what follows, we 
explain and formalize this statement. We start with the notion of being algorithmically 
powerful and note what it is that makes treewidth such a successful measure. Cour-
celle’s theorem [9] states that all MSO2-expressible problems are linear-time decidable 
on graphs of bounded treewidth.

In general, monadic second-order (MSO) logic is a language particularly suited for de-
scribing problems which are efficiently solvable on “tree-like structured” graphs. Besides 
aforementioned [9] this is witnessed, for instance, also by [2,12,19]. Thus it seems to us 
that the class of problems for which an algorithmically useful digraph width measure 
must admit polynomial-time algorithms should include all problems expressible in some 
dialect of graph MSO. This, in particular, includes all the MSO1-expressible problems on 
symmetrizations of digraphs (which is indeed a much smaller range of problems than all 
the MSO2-expressible ones on digraphs). We refer to Section 2 for the formal definitions, 
and to the beginning of Section 3 for a closer discussion of why MSO1 is a reasonable, 
albeit not perfect, choice in this context.

Algorithmically powerful digraph width measures do exist. Candidates include the 
number of vertices of the input graph and the treewidth of the underlying undirected 
graph. However, the former is not interesting at all, and in the latter case one can apply 
the rich theory of undirected graphs of bounded treewidth but would not get anything 
substantially new for digraphs. As such, we are interested in digraph width measures 
that are substantially different (incomparable, Definition 3.3) from undirected treewidth.

We also take a look at the aforementioned structural side. To motivate our discus-
sion of directed topological minors in Section 4 and their role in our main results, we 
recall that treewidth has a nice alternative cops-and-robber game characterization [47]. 
In fact, several digraph width measures such as DAG-width [5], Kelly-width [28], and 
DAG-depth [22] admit some variants of this useful game-theoretic characterization, and 
directed treewidth is (loosely) related to another variant of such a characterization [29]. 
While there is no formal definition of a cops-and-robber game-based width measure, all 
versions of the cops-and-robber game that have been considered so far share a basic 
property in that shrinking induced paths does not generally help the robber. What we 
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actually argue is that a directed width measure that is “cops-and-robber game based” 
should be nearly monotone under taking directed topological minors (Theorem 4.7). On 
the other hand, there exist algorithmically useful measures more general than undirected 
treewidth—those are directed clique-width [11] and bi-rank-width [30]—which are not 
monotone even under taking subdigraphs.

To be more specific about the words “nearly monotone”, we say that a digraph width 
measure δ is closed under taking directed topological minors if there is an absolute 
constant c such that, for each digraph D, the δ-width of any directed topological minor 
of D is at most δ(D) + c (to account for possible sporadic cases).

In summary, our main conceptual contribution which is further explained in Section 3
and proved in Section 6 (Theorems 6.6 and 6.7), reads:

A digraph width measure that admits XP-time algorithms for all MSO1-problems 
with respect to the width as a parameter and is closed under taking directed topo-
logical minors, cannot be substantially different from ordinary undirected treewidth.

This in turn implies that in a search for an algorithmically useful digraph width measure 
different from treewidth, one has to resign on demanding nice structural properties, e.g. 
those related to cops-and-robber game characterizations. One can also view the result 
as a sort of a lower bound on the computational complexity of MSO1-problems on such 
digraph classes of bounded δ-width.

Related research. Independently of our complexity research of digraph width mea-
sures, Kreutzer and Tazari [35] investigated related problem of (in)tractability of 
MSO2-problems on undirected graph classes of very unbounded treewidth. Essentially, 
they [35] proved that if a subgraph-closed class admits polynomial time solutions of 
all MSO2-problems, then this class has polylogarithmically-bounded treewidth, i.e., the 
treewidth of every n-vertex graph in the class is of order O(logc n) for a suitable con-
stant c. Although their result is in general incomparable to ours, there is an interesting 
common ground to both the results.

Inspired by the approach of [35] we have subsequently extended it to claim, in partic-
ular, roughly the following [23]: if a digraph width measure δ admits XP-time algorithms 
for all coloured MSO1-problems with respect to the width as a parameter and δ is closed 
under taking subdigraphs, then the ordinary undirected treewidth can be larger than 
δ by at most a polylogarithmic factor, i.e., the undirected treewidth of every n-vertex 
digraphs D from the class is of order O(δ(D) · logc n) for a suitable constant c.

Note that there are important conceptual differences between the main result of this 
paper and the aforementioned result of [23] which make them mutually incomparable. 
On the one hand, [23] applies only when the gap between undirected treewidth and δ
grows by an explicit (polylogarithmic) function of the size of the digraph, while here 
we exclude any unbounded gap for powerful δ. On the other hand, here we require δ
to be closed under directed topological minors while [23] only requires δ to be closed 
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under taking subdigraphs. There are technical differences, too. The complexity-theoretic 
assumptions made in [23] are stronger than those imposed here, and the class of problems 
for which [23] assumes efficient solvability is larger by allowing digraph vertices to be 
coloured.

Organization. The paper is organized in six parts, starting with some standard definitions 
in Section 2. Then in Section 3, we formally establish and discuss the properties an 
algorithmically useful digraph width measure should have. In Section 4, we introduce 
the notion of a directed topological minor, and discuss its properties, game-theoretic 
characterizations, and consider separate complexity issues. In particular, we show that 
it is hard to decide for a fixed small digraph whether it is a directed topological minor of 
a given digraph. In Section 5, we continue with the technical prerequisites of our main 
result. There we show that the structure of hard MSO1-definable graph problems is just 
as rich for subdivisions of planar graphs with degrees 1 or 3 as for general graphs. In 
Section 6, we prove our main results which have already been outlined above. We also 
provide examples showing that the prerequisites of our results cannot be substantially 
weakened. We end with some concluding remarks in Section 7.

2. Definitions and notation

The graphs (both undirected and directed) that we consider in this paper are simple, 
i.e. they do not contain loops and parallel edges. Given a graph G, we let V (G) denote its 
vertex set and E(G) denote its edge set, if G is undirected. We usually denote a directed 
graph (digraph) by D and its arc set by A(D). Given a directed graph D, the underlying 
undirected graph U(D) of D is an undirected graph on the vertex set V (D) and {u, v}
is an edge of U(D) if and only if either (u, v) ∈ A(D) or (v, u) ∈ A(D). A digraph D is 
an orientation of an undirected graph G if U(D) = G. If H is a sub(di)graph of G, then 
we denote this fact by writing H ⊆ G.

For a vertex pair u, v of a digraph D, a sequence P = (u = x0, . . . , xr = v) is called 
directed (u, v)-path of length r > 0 in D if the vertices x0, . . . , xr are pairwise distinct 
and (xi, xi+1) ∈ A(G) for every 0 ≤ i < r. A directed cycle is defined analogously with 
the modification that x0 = xr. A digraph D is acyclic (a DAG) if D contains no directed 
cycle.

Parameterization by width measures. Following Downey–Fellows [14], a parameterized 
problem Q is defined as a subset of Σ ×N0, where Σ is a finite alphabet and N0 = N ∪{0}. 
The following is folklore:

Definition 2.1 (Parameterized tractability, [14]). A parameterized problem Q is fixed-par-
ameter tractable if there is an algorithm that given 〈x, k〉 ∈ Σ ×N0 decides whether 〈x, k〉
is a yes-instance of Q in time f(k) · p(|x|), where f is some computable function of the 
parameter k alone, p is a polynomial and |x| is the size measure of the input. The class 
of fixed-parameter tractable problems is denoted by FPT.
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Furthermore, let XP denote the class of parameterized problems Q that admit an al-
gorithm running in time O(|x|f(k)) for some computable function f , i.e. with polynomial 
run-time for every fixed value of the parameter k. We refer to such an algorithm for Q
as to an XP-time algorithm with respect to k.

Some of the most successful kinds of parameterized problems are those of a form 〈x, k〉
where an integer k is simply the value of a suitable structural width parameter of the 
input x. Such as, the problem input is 〈G, k〉 where G is a graph and the parameter 
k is its treewidth. For the sake of completeness, we review here the definitions of the 
aforementioned two basic (and well-known) structural width parameters—of treewidth 
and clique-width, while we leave discussion of digraph width measures till Sections 3
and 4.

Definition 2.2 (Treewidth, [43]). A tree-decomposition of a graph G is a pair (T, β), where 
T is a tree and β : V (T ) → 2V (G) is a mapping (of the “bags”) that satisfies the following:

• for each edge e = uv ∈ E(G), there is x ∈ V (T ) such that {u, v} ⊆ β(x),
• if x ∈ V (T ), and if y, z ∈ V (T ) are two nodes in distinct components of T − x, then 

β(y) ∩ β(z) ⊆ β(x) (“interpolation”),
•

⋃
x∈V (T ) β(x) = V (G).

The width of (T, β) is the maximal value of |β(x)| − 1 over all x ∈ V (T ). The smallest 
width over all tree-decompositions of the graph G is the treewidth tw(G) of G.

Definition 2.3 (Clique-width, [11]). Let k be a positive integer. A pair (G, γ) is a k-labelled 
graph if G is a simple graph and γ : V (G) → {1, 2, . . . , k} is a mapping. A k-expression is 
a well formed expression t built using the four operators defined below. Let 1 ≤ i, j ≤ k. 
Then

• [i] is a nullary operator which represents a graph with a single vertex labelled i,
• ηi,j , for i 
= j, is a unary operator which adds edges between all pairs of vertices 

where one is labelled i and the other is labelled j,
• ρi→j is a unary operator which changes the labels of all vertices labelled i to j, and
• ⊕ is a binary operator which represents disjoint union of two k-labelled graphs.

Each k-expression t naturally generates a k-labelled simple graph G = G[t]. The smallest 
k such that there exists a k-expression generating G is the clique-width of G.

Logical theories and interpretation. In order to formally describe and utilize our view 
of an algorithmically useful digraph width measure, we have to briefly introduce a few 
notions from logic and model theory [16,26]. In a nutshell, a logical theory is composed of 
a class of mathematical structures, and of a logical language used to formulate properties 
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of these structures. For our purpose we consider finite relational structures consisting of 
a finite set, the domain, and of a collection of relations over the domain. The language 
is the one of monadic second order (MSO) logic, which is allowed to quantify over the 
elements and the subsets of the domain, together with relational symbols (predicates) 
for the relations in the considered structures.

A simple graph G can be represented as a relational structure in two major ways; 
either as the domain V (G) with the binary adjacency relation between its vertices, or 
with the domain formed by a disjoint union of V (G) and E(G) and the binary relation 
being the incidence between vertices and edges. The MSO theory of (simple) graphs is 
commonly abbreviated as MSO1 in the first, adjacency representation, and as MSO2 in 
the second, incidence representation. MSO1 is clearly contained in MSO2, and MSO2
is known to have a strictly stronger expressive power. A “practical” difference between 
those two is that MSO1 is allowed to quantify only over vertices (and therefore also over 
edges) and vertex sets, while MSO2 can additionally quantify over edge sets.

We are primarily interested in MSO1; its weaker expressive power is an advantage in 
this paper since we are going to use it to prove negative results.

Definition 2.4 (MSO1 language). The language of MSO1 on graphs contains the logical 
expressions that are built from the following elements:

• variables for elements (vertices) and their sets, and the predicate x ∈ X,
• the predicate adj(u, v) with u and v vertex variables,
• equality for variables, the connectives ∧, ∨, ¬, →, and the quantifiers ∀, ∃ .

Notice that MSO1 can deal both with graphs and digraphs, simply depending on 
whether the adjacency relation is symmetric or not. For clarity, we replace the relational 
symbol adj(u, v) with arc(u, v) when dealing explicitly with digraphs.

Example 2.5. For undirected graphs, the property of being 3-colourable can be expressed 
by the MSO1 formula

∃V1, V2, V3

[
∀v (v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3)∧∧
i=1,2,3

∀v, w (v /∈ Vi ∨ w /∈ Vi ∨ ¬ adj(v, w))
]
.

A decision graph property P is MSO1-definable if there exists an MSO1 formula φ
such that P holds for an arbitrary graph G if and only if G |= φ, i.e., φ is true on the 
model G.

Our main tool in the logic-oriented part of the paper will be the classical interpretabil-
ity of logic theories [42,16]. To describe its simplified setting, assume that two classes of 
relational structures K and L are given. The basic idea of an interpretation I of the 
theory ThMSO(K ) in the theory ThMSO(L ) is to transform MSO formulas φ over K
into MSO formulas φI over L in such a way that “truth is preserved”:
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Fig. 1. The concept of an interpretation I of ThMSO(K ) into ThMSO(L ).

• First one chooses a formula α(x) intended to define in each structure G ∈ L a set 
of individuals (the new domain) G[α] := {a : a ∈ dom(G) and G |= α(a)}, where 
dom(G) denotes the domain of G.

• Then one chooses for each s-ary relational symbol R from K a formula βR(x1, . . . ,
xs), with the intended meaning to define a corresponding relation G[βR] :=
{(a1, . . . , as) : a1, . . . , as ∈ dom(G) and G |= βR(a1, . . . , as)}. With the help of 
these formulas one can define for each structure G ∈ L the relational structure 
GI :=

(
G[α], G[βR], . . .

)
intended to correspond with structures in K .

• Finally, there is a natural way to translate each formula φ (over K ) into a formula 
φI (over L ), by induction on the structure of formulas. The atomic formulas are 
substituted by corresponding chosen formulas (such as βR) with the corresponding 
variables. Then one proceeds via induction simply as follows:

(¬φ)I �→ ¬(φI) , (φ1 ∧ φ2)I �→ (φ1)I ∧ (φ2)I ,

(∃xφ(x))I �→ ∃y
(
α(y) ∧ φI(y)

)
, (∃X φ(X))I �→ ∃Y φI(Y ).

The concept is briefly illustrated in Fig. 1.

Definition 2.6. Let K and L be classes of relational structures. Theory ThMSO(K ) is 
interpretable in theory ThMSO(L ) if there exists an interpretation I as above, such that 
the following two conditions are satisfied:

i) For every structure H ∈ K , there is G ∈ L such that GI ∼= H, and
ii) for every G ∈ L , the structure GI is isomorphic to some structure of K .

Furthermore, ThMSO(K ) is efficiently interpretable in ThMSO(L ) if the translation of 
each φ into φI is computable in polynomial time, and also the structure G ∈ L such 
that GI ∼= H can be computed from any H ∈ K in polynomial time.

We note that the concept of an efficient interpretation is also called a transduction [10]. 
We, however, prefer to stay with the term interpretation since transductions are usually 
used in a much wider setting which would be overcomplicated for the purpose of this 
paper.
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3. Desirable digraph width measures

A digraph width measure is a function δ that assigns to each digraph a non-negative 
integer. To stay reasonable, we expect that infinitely many non-isomorphic digraphs 
are of bounded width. Following the informal discussion in Section 1, we consider what 
properties a useful width measure is expected to have. Importantly, one must be able 
to solve a rich class of problems on digraphs of bounded width. But what does “rich” 
mean?

If we consider existing algorithmic metatheorems for undirected graphs, then we can 
see a good balance between the class of problems considered (say, those [9] MSO2- or [12]
MSO1-definable) and the existence of positive algorithmic results (linear-time decidabil-
ity on graphs of bounded treewidth or clique-width, respectively). To achieve such a good 
balance for digraphs, it seems natural to us to follow the same foundations here. Conse-
quently, if we consider any logical language L over digraphs that is powerful enough to 
deal with sets of singletons (i.e., L is MSO), and that L is able to identify the adjacent 
pairs of vertices of a digraph; then, naturally, L can interpret the MSO1 theory of the 
underlying undirected graph, at least.

Though, the previous finding about L interpreting the undirected MSO1 theory may 
sound odd: why should one care about undirected properties of digraphs? The truth 
is that we do not care about them at all, but we would like to find a most natural 
common conservative denominator of all the “reasonably rich” classes of problems one 
would like to efficiently solve on digraphs of bounded width. Then, simply combining 
the two essences of the previous paragraph—to have the expressive power of MSO and 
to be able to identify the adjacent pairs of vertices—one straightforwardly arrives at the 
MSO1 theory as the most appropriate conservative choice. Moreover, one may simply 
“forget” the orientation of edges (as adj(u, v) ≡ arc(u, v) ∨ arc(v, u)), to stay on the safe 
(i.e., less powerful) side. In a summary, we thus state:

Definition 3.1 (Algorithmic powerfulness). A digraph width measure δ is powerful if, for 
every MSO1-definable undirected property P (Definition 2.4), there exists an XP-time 
algorithm deciding P on all digraphs D (more formally, on U(D)) with respect to the 
parameter δ(D).

The traditional measures treewidth, branchwidth, clique-width, and the more recent 
rank-width, are all powerful for undirected graphs [9,12]. For directed graphs, unfortu-
nately, exactly the opposite holds. All the width measures suggested in recent years as 
possible extensions of treewidth—including directed treewidth [29], D-width [46], DAG-
width [5], and Kelly-width [28]—are not powerful. More generally, it holds:

Proposition 3.2. Assume a digraph width measure δ achieving only bounded values on the 
class of all acyclic digraphs (DAGs). If P 
= NP, then δ is not powerful.
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Proof. Let P be any NP-complete MSO1-definable property of undirected graphs, say, 
3-colourability. We construct the digraph property P ′ by replacing every occurrence of 
the predicate adj(x, y) in P by

(
arc(x, y) ∨arc(y, x)

)
. Clearly, an undirected graph has the 

property P if and only if any digraph D that is an orientation of G has the property P ′. If 
δ was powerful, then by Definition 3.1, the property P ′ would be decidable on all DAGs 
in polynomial time. Hence for any input graph G, we could decide whether G |= P in 
polynomial time by first constructing an acyclic orientation D of G, and then deciding 
whether D |= P ′ (in polynomial time). This would imply that P = NP. �

Another important property one would like a digraph width measure to possess is 
that it should not be comparable to the treewidth of the underlying undirected graph. 
To be more precise, we do not want the width measure δ to upper-bound the treewidth of 
the underlying undirected graph. This makes sense because any measure δ which makes 
the undirected treewidth bounded is automatically powerful, but such δ would not help 
solve any more inputs than what we already can with traditional undirected measures.

Definition 3.3. A digraph width measure δ is called treewidth-bounding if there exists a 
computable function b such that for every digraph D with δ(D) ≤ k, we have tw(U(D)) ≤
b(k).

Disparity between measures. In the rest of the section, we consider disparity between 
two of the treewidth-like digraph measures—DAG-width [5] and Kelly-width [28], and 
the algorithmically successful ones—directed clique-width [11] and bi-rank-width [31]. 
None of these measures are treewidth-bounding. Since the definitions of DAG-width and 
Kelly-width are quite involved, we skip them here and refer to [5,28]. Instead, we note 
that both DAG- and Kelly-width share some common properties important for us:

• Acyclic digraphs (DAGs) have DAG-width 0 and Kelly-width 1 (cf. Proposition 3.2).
• If we replace each edge of a graph of treewidth k by a pair of opposite arcs, then the 

resulting digraph has DAG-width k and Kelly-width k + 1.
• Each of these measures can be exactly characterized by some natural directed 

counterpart of the cops-and-robber game for undirected treewidth [47] (cf. Proposi-
tion 4.2).

As for another type of digraph-width measures, aforementioned clique-width was orig-
inally defined for undirected graphs [11], but Definition 2.3 readily extends to digraphs; 
simply replace the operator ηi,j by the operator αi,j creating directed edges (arcs) from 
each vertex with label i to each vertex with label j. Courcelle, Makowsky and Rotics [12]
have shown that all MSO1-definable graph problems have FPT algorithms when pa-
rameterized by the clique-width of the input graph. Since undirected clique-width and 
rank-width are equivalent measures in the sense that a graph class has bounded clique-
width if and only if it has bounded rank-width [41], the latter result also holds when the 
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parameter is the rank-width of the input graph. Bi-rank-width, a directed counterpart 
of rank-width, was introduced by Kanté [30] and is related to directed clique-width in 
the sense that one is bounded on a digraph class if and only if the other is. We refer 
to [31] for its definition and properties.

Theorem 3.4. (Via Courcelle, Makowsky, and Rotics [12].) Directed clique-width, and 
hence bi-rank-width, are powerful digraph-width measures. The problem of deciding any 
fixed directed MSO1-definable property of digraphs belongs to the class FPT wrt. their 
directed clique-width or bi-rank-width.

For a better understanding of the situation, we stress one important but elusive fact: 
Bounding the undirected clique-width or rank-width of the underlying undirected graph 
does not generally help solve directed graph problems. Precisely, in analogy with Propo-
sition 3.2 and its proof, we can claim:

Proposition 3.5. If P 
= NP, then there exist MSO1-definable digraph properties that have 
no XP-time algorithms with respect to undirected clique-width or rank-width.

Proof. This follows from the observation that there exist directed problems which are 
NP-complete even on tournaments (orientations of complete graphs), i.e. on digraphs of 
undirected clique-width 2 and rank-width 1. If such a problem had an XP-time algorithm, 
then this would immediately imply P = NP. An example of this is the problem of 
partitioning a tournament into two acyclic subtournaments [8]: this is MSO1-definable 
and is NP-complete. �

Proposition 3.5 is in sharp contrast to the situation with treewidth where bounding 
the treewidth of the underlying undirected graph allows all the algorithmic machinery to 
work also on digraphs. A brief informal explanation of this antagonism lies in the facts 
that a “bag” in a tree decomposition has bounded size and so there is only a bounded 
number of possible orientations of the edges in it, while a single ηi,j (edge-addition) 
operation in a clique-width expression creates a bipartite clique of an arbitrary size 
which admits an unbounded number of possible orientations.

A resolution. From Propositions 3.2 and 3.4, it seems that directed clique-width and 
bi-rank-width are better possible candidates for a good digraph width measure. Unfor-
tunately, clique-width and bi-rank-width do not possess the nice structural properties 
common to the various treewidth-like measures, such as being subgraph- or contraction-
monotone. This is due to symmetric orientations of complete graphs all having clique-
width two while their subdigraphs include all digraphs, even those with arbitrarily high 
clique-width. This seems to be a drawback and a possible reason why clique-width- and 
rank-width-like measures are not so widely accepted.

The natural question now is: can we take the better of each of the two worlds? In 
our search for an answer, we do not study specific digraph width measures but focus on 
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desirable properties of all possible width measures in general. The core contribution of 
this paper, summarized in Theorems 6.6 and 6.7, then answers this question negatively.

• One cannot have a digraph width measure that is powerful (Definition 3.1), not 
treewidth-bounding (Definition 3.3) and closed under taking directed topological 
minors (Definition 4.4) at the same time.

• Consequently, “algorithmically useful” digraph width measures cannot possess “nice” 
structural properties at the same time.

This strong and conceptually new result holds modulo well-established computational 
complexity assumptions, namely, that NP 
= P and NP � P/poly. Further discussion of 
the necessary technical details of this result can be all found in Section 6.

4. Games and directed topological minors

The third requirement (after being powerful and not treewidth-bounding) we impose 
above on a desired “good” digraph width measure is for it to possess some nice structural 
properties similar to those we often see in undirected graph measures.

Having an alternative characterization in terms of a cops-and-robber game is a trait 
common to many widely known measures and proved to be very useful, often signifi-
cantly simplifying some of the proofs. Most of the digraph-width measures (in fact all 
of the major ones), which were proposed as a directed counterpart to treewidth, have a 
characterization in terms of some variant of this cops and robber game, and indeed they 
were explicitly designed to have this characterization.

The treewidth game. The original cops-and-robber game was introduced in [47] as an 
alternative characterization of treewidth. The robber stands on a vertex of the graph, 
and can at any time run at a great speed to any other vertex along a path of the graph. 
He is not permitted to run through a cop, however. There are k cops, each of whom at any 
time either stands on a vertex or is in a helicopter. The goal of the player controlling the 
cops is to land a cop via a helicopter onto a vertex currently occupied by the robber, and 
the robber’s objective is to elude capture. (The point of the helicopter is that cops can 
move anywhere in the graph but, while moving, they do not interfere with the robber.) 
The robber can see the helicopter landing and may run to a new vertex before it actually 
lands.

More formally, the game is played on a graph G by two players: the cop player, and 
the robber player. We denote (X, r) the position of the game where cops occupy the 
vertices X ⊆ V (G) and the robber is in r ∈ V (G). The game is played according to the 
following rules: At the beginning the robber player chooses a vertex r0 ∈ V (G), giving 
us an initial game position (∅, r0). Given a position (X, r), the cop player chooses a set 
X ′ ⊆ [V ]≤k, and then the robber player chooses a vertex r′ ∈ V (G) \X ′ such that both 
r and r′ lie in the same connected component of the graph G \ (X ∩X ′), giving us the 
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next position (X ′, r′). A play is a maximal sequence γ of positions formed from an initial 
game position according to the rule above.

The play is winning for the cop player if it is finite—i.e., for the final position (X, r) of 
the play γ, it is true that there is X ′ ∈ [V ]≤k such that no vertex of the graph V (G) \X ′

is in the same connected component of the graph G \ {X ∩X ′} as r (this immediately 
implies r ∈ X). On the other hand the robber player wins if the play is infinite. The 
strategy for the cop player is a function σ : (X, r; γ) �→ X ′, which, for a position (X, r)
of the game, gives us the next position X ′ of the cops. Notice that in general a strategy 
σ depends also on the history γ which is a subsequence of positions from the initial 
one to (X, r) in the current play. Without loss of generality we can restrict ourselves 
to strategies where |X�X ′| = 1, i.e. we either place or remove exactly one cop. The 
following theorem (often called the treewidth duality theorem) relates cops-and-robber 
games and treewidth:

Theorem 4.1. (See [47].) Graph G has treewidth k iff the minimum number of cops 
required to win the cops-and-robber game is k + 1.

For directed graphs the game is naturally modified by additionally requiring that the 
robber follows the direction of arcs: for any two consecutive robber positions r and r′, 
as above, there is a directed path from r to r′ in G \ {X ∩X ′}. Several variants of the 
directed cops-and-robber game were proposed for different digraph width measures. The 
most important variants restrict the movement of cops and/or the robber. The cops may 
be required to play monotonely, meaning that they can never revisit a vertex they have 
already left. The robber can be invisible to the cops, requiring the cops to search the 
whole graph. Finally the robber can be lazy, i.e. he can move only when a cop is just 
about to land on the vertex currently occupied by the robber (as opposite to the eager
robber in the original game). Formally, a game is:

• monotone if, whenever positions (Xi, ri), . . . (Xj , rj), . . . (Xk, rk) occur in this order 
(not necessarily consecutively) in a play, then Xj ⊇ Xi ∩Xk;

• robber-invisible if the cop strategy, for any two valid play histories γ and γ′ which 
differ (from each other) only in robber positions, fulfils σ(X, r; γ) = σ(X, r′; γ′).

• robber-lazy if a game position (X, r) is always succeeded by (X ′, r) (for some X ′) 
unless r ∈ X ′.

Proposition 4.2. (See [5,28,3].) The three common digraph width measures are charac-
terized by the following cops-and-robber game variants:

Measure Cops Robber
DAG-width monotone visible
Kelly-width monotone invisible, lazy
directed path-width monotone invisible
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One important digraph measure missing from this list is the directed treewidth [29], 
the first measure to be defined as a directed counterpart of treewidth. The problem with 
this measure is that it does not have an exact game characterization. (In [29], the au-
thors indeed gave a cops-and-robber game, which is similar to the game for DAG-width, 
with the important difference that the robber must stay in the same strongly connected 
component. The number of cops needed to catch a robber on a graph is within a con-
stant factor of its directed treewidth.) The lack of such a characterization does not allow 
to include it into our generic framework, and therefore we will not consider directed 
treewidth in the rest of the paper.

Introducing directed minors. In the realm of undirected graphs, characterizability by a 
cops and robber game is closely related to monotonicity under taking minors. Recall that 
a graph H is a minor of a graph G if it can be obtained by a sequence of applications 
of three operations: vertex deletion, edge deletion and edge contraction. (See e.g. [13].) 
A measure is monotone under taking minors if the measure of a minor is never larger 
than the measure of the graph itself. Note that treewidth is monotone under taking 
minors. The relationship between cops-and-robber games and taking a minor of a graph 
should now be obvious: taking a subgraph can never improve robber’s chances of evading 
k cops and, since the robber can move infinitely fast and cops use helicopters, neither 
can edge contraction.

It is therefore only natural to expect that a “good” digraph-width measure, charac-
terizable by a directed cops-and-robber game, should also be (at least nearly) monotone 
under some notion of a directed minor. However, there is currently no widely agreed 
definition of a directed minor in general. One published (but perhaps too restrictive on 
subdivisions as we will see later) notion is the butterfly minor [29]. Similarly, a traditional 
and more relaxed notion of digraph immersion is still too restrictive on subdivisions for 
our purpose. Several other notions of directed minors were introduced recently [36,34,33]
but none of these are useful in our context.

To deal with directed minors, we first need a formal notion of an arc contraction for 
digraphs:

Definition 4.3. Let D be a digraph and a = (x, y) ∈ A(D) be an arc. The digraph obtained 
by contracting arc a, denoted by D/a, is the digraph on the vertex (V (D) \{x, y}) ∪{va}
where va is a new vertex, and the arc set A′ such that (u, v) ∈ A′ iff one of the following 
holds

(u, v) ∈ A(D \ {x, y}), or

v = va, and (u, x) ∈ A or (u, y) ∈ A, or

u = va, and (x, v) ∈ A or (y, v) ∈ A.

See Fig. 2 for an example of a contraction. Note that contraction always produces 
simple digraphs (that is, no arcs of the form (x, x)). The result of a contraction does not 
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Fig. 2. Arc contraction: digraphs D (left) and D/a.

Fig. 3. Any arc contraction in this digraph introduces a new directed path.

depend on the orientation of the contracted arc, and we treat contraction of a pair of 
opposite arcs (x, y) and (y, x) as a contraction of a single bidirectional arc. For simplicity, 
we also sometimes identify the newly created vertex va with one of the former vertices 
x, y (depending on the context).

An important decision point when defining a minor is: which arcs do we allow to 
contract? In the case of undirected graph minors, any edge can be contracted. However, 
the situation is not so obvious in the case of digraphs. Look again at Fig. 2. If we 
contract the arc a, we actually introduce a directed path from u to v which was not 
present before, whereas in undirected graphs no new (undirected) path is ever created 
by the edge contraction. On the other hand, simply never introducing a new directed path 
(that is the butterfly minor of [29]) is not a good strategy either—since one can easily 
construct, see Fig. 3, digraphs in which no arc can be contracted without introducing 
a new directed path. Yet such digraphs can be “very simple” with respect to usual 
cops-and-robber games, and arc contractions do not significantly help the robber in the 
depicted situation of Fig. 3.

In order to deal with the mentioned issue of contractibility of arcs, and to remain 
as general as possible at the same time, we actually consider a specific kind of minors, 
i.e. directed topological minors where we allow only those arc contractions that do not 
introduce any new directed path between vertices of degree at least three (cf. Fig. 3
again). This is again inspired by a related notion in the realm of undirected graphs. 
A topological minor for undirected graphs is defined similarly to the usual minor, but 
the edge contraction can only be applied to an edge e = {u, v} such that u or v has exactly 
two neighbours. In other words, graph H is a topological minor of G iff a subdivision of 
H is isomorphic to a subgraph of G.

Note that topological minors for digraphs have been defined before. In his thesis 
Hunter [27] considers a definition of directed topological minor where an arc is con-
tractible iff at least one end vertex has both out- and in-degree one. This approach 
coincides with the notion of directed subdivisions used, e.g., by Mader [38]. However, 
this definition deeply suffers from the same problems (i.e. no arc is contractible in Fig. 3) 
as the butterfly minors. We will argue that our definition is more relevant in the con-
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text of digraph widths and their game characterizations, and justify our choice by the 
subsequent claims (see Lemma 4.6 and Theorem 4.7).

For simplicity, we sometimes write u →D v for (u, v) ∈ A(D), and u →+
D v for the 

transitive closure of →D (a directed path from u to v). The index D may be omitted if 
it is clear from the context. We also write u →∗

D v if either u →+
D v or u = v.

Definition 4.4. Let V3(D) ⊆ V (D) denote the subset of vertices having at least three 
neighbours in D. An arc a = (u, v) ∈ A(D) is 2-contractible in a digraph D if

• u or v has exactly two neighbours (particularly, {u, v} � V3(D)), and
• (v, u) ∈ A(D) or there is no pair of vertices x, y ∈ V3(D), possibly x = y, such that 

x →∗
(D\a) v and u →∗

(D\a) y.

A digraph H is a directed topological minor of D if there exists a sequence of digraphs 
D0, . . . , Dr such that D0 ⊆ D and Dr

∼= H, and for all 0 ≤ i ≤ r−1, one can obtain Di+1
from Di by contracting a 2-contractible arc.

The essential idea in the above definition is that an arc is 2-contractible if its contrac-
tion does not result in the creation of a new directed path between vertices of degree at 
least 3. Robustness of the definition is justified by the following proposition:

Proposition 4.5. Given a digraph D, let D′ be obtained from D by a sequence of vertex 
deletions, arc deletions and contractions of 2-contractible arcs (in any order). Then D′

is a directed topological minor of D.

Proof. Let 
 be the sequence of vertex deletions, arc deletions and contractions of 
2-contractible arcs used to obtain D′. We process all three types of operation in a fixed 
order. We start by vertex deletions. Let W be the smallest subset of V (D) created as 
follows: for each deletion of a vertex v in 
 such that v ∈ V (D) the set W contains v. 
Otherwise v was created by a contraction and W includes all vertices of V (D) which 
were contracted to form v′. We now put D1 = D \W . Next we perform the arc deletions 
in 
 (note that some of the arcs may have already been removed by the previous step). 
Let us call the resulting graph D2. Finally we contract all remaining 2-contractible arcs 
which were contracted in 
, in the same order, and call the resulting graph D3.

Obviously D2 is a subgraph of D, and D3 was obtained from D2 by a series of con-
tractions of 2-contractible arcs. We claim that D3 is isomorphic to D′. It is easy to check 
that all vertices and arcs deleted in 
 are not present in D3, and no extra vertices and 
arcs were removed. The rest follows from the fact that by Definition 4.4 a 2-contractible 
arc cannot become non-2-contractible by vertex and arc deletions. �

As mentioned above, the driving force in our definition of directed topological minors 
is to always allow contraction of “long subdivisions”, as e.g. in Fig. 3. We shall make this 
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Fig. 4. Two examples when the required number of cops grows by 1 and by 2, respectively, after taking 
a directed topological minor. The bottom case applies only to the path-width game, and is a worst-case 
example according to Theorem 4.7.

formally precise now. Let D be a digraph and P = (x0, . . . , xk) a sequence of vertices 
of D. Then P is a 2-path (of length k) in D if P is a path in the underlying graph U(D)
and all its internal vertices xi for 0 < i < k have exactly two neighbours (degree 2) 
in U(D). Obviously not every 2-path is a directed path. The following lemma explains 
the close relationship between 2-paths and directed topological minors.

Lemma 4.6. Let D be a digraph and S = (x0, . . . , xk) a 2-path of length k > 2 in D. 
Then there exists a sequence of 2-contractions of arcs of S in D turning S into a 2-path 
of length two (or even of length one if S is a directed path).

Proof. If S is a directed path in D, then any arc of S is 2-contractible. Otherwise S
is not a directed path in D and therefore there exists an index 0 < i < k, such that 
(xi, xi−1), (xi, xi+1) ∈ A(D) or (xi−1, xi), (xi+1, xi) ∈ A(D). Then all other arcs of S are 
2-contractible, as their contraction cannot produce a new directed path between any two 
vertices in D with more than two neighbours. �
Monotonicity of the measures. The natural question is whether the known digraph-width 
measures are monotone under taking directed topological minors. This is not exactly true 
for certain sporadic examples as shown, e.g., in Fig. 4, but we prove that the measures 
(i.e., those mentioned by Proposition 4.2) cannot grow by more than two after taking 
any such minor:

Theorem 4.7. Let D be a digraph such that in the DAG-width (Kelly-width, directed path-
width) game, k ≥ 1 cops are enough to catch the robber. Let H be a directed topological 
minor of D. Then at most k + 2 cops are needed to catch the robber on H in that same 
game.

We actually believe that a bound of k + 1 cops is enough in Theorem 4.7 for the 
DAG-width and Kelly-width games (and perhaps even a bound of k cops if k ≥ 3). 
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The precise proof is, however, surprisingly nontrivial and so we stick here with a much 
simpler argument for the bound k + 2, which simultaneously covers all the three games.

To state our claims, we need some more notation. Throughout the proof, for a game 
position (X, v) we denote by ReachD(v, X) = {x ∈ V (D) \ X | v →∗

D\X x} the set of 
vertices reachable by the robber placed in v with cops positioned in X. The vertices not 
in ReachD(v, X) are shortly called clear. Let γ denote a play 

(
(Xi, ri) : i = 0, 1, 2, . . .

)
of 

our respective game, which must be monotone by Proposition 4.2 (hence once cleared, 
the vertex will stay clear forever in a cop-win play). For v ∈ V (D), we define indexγ(v)
as the least index k such that v ∈ Xk in the play γ. By MarginD

γ (v) we denote the set of 
those vertices x ∈ V (D) \V3(D) for which v is the last (wrt. the play γ) non-clear vertex 
of V3(D) such that x is reachable from v along a 2-path (including x = v). Formally, for 
v ∈ V3(D), and setting k = indexγ(v) and ReachD

2 (v) = ReachD
(
v, V3(D) \{v}

)
, we have 

MarginD
γ (v) =

{
x ∈ ReachD

2 (v) | ∀w ∈ V3(D) : x ∈ ReachD
2 (w) → w /∈ ReachD(rk, Xk)

}
. 

As a special case, MarginD(∅) denotes the vertices of D not reachable from any vertex 
of V3(D).

Note that MarginD(∅) contains only vertices of degree ≤ 2 in U(D). MarginD
γ (v)

consists of the vertices of some 2-paths starting at v (up to the point where orientation 
of arcs admits reachability from v). For such a 2-path P = (x0 = v, x1, . . . , xk), we 
say that the play γ clears P in a leapfrogging manner from v if the following hold for 
some index � of γ: It is indexγ(v) < � and v, x1 ∈ X�. Then, for i = 1, . . . , k − 1, it is 
X�+2i−1 = X�+2i−2∪{xi+1} and X�+2i = X�+2i−1 \{xi}, unless possibly xi+1 ∈ X�+2i−2
in which case the former one step is skipped. Finally, X�+2k−1 = X�+2k−2 \ {xk}.

Now, a monotone play γ =
(
(Xi, ri) : i = 0, 1, 2, . . .

)
is called 2-special if (1) whole 

MarginD(∅) is cleared before any other vertex of D; and (2) for every v ∈ V3(D), each of 
the 2-paths forming MarginD

γ (v) is cleared by γ in a leapfrogging manner from v right 
after a cop lands on v (precisely, before a cop subsequently lands on another vertex 
of V3(D)). The order of clearing between these 2-paths is irrelevant. A monotone cop 
strategy is 2-special if every play according to this strategy is 2-special.

Lemma 4.8. Let D be a digraph such that in the DAG-width (Kelly-width, directed path-
width) game, k ≥ 1 cops are enough to catch the robber. Then k + 2 cops have (in the 
respective game) a 2-special monotone winning strategy against the robber in D.

Proof. We do the same proof for all the three games, and hence we neither look at 
robber’s position, nor assume him to be lazy. We also do not explicitly invoke play 
history in subsequent modifications. The proof closely follows the definition of 2-special. 
Let c1, c2 be the two additional cops. Namely, for a monotone winning cop strategy σ
(not using c1, c2), we first add to the beginning of σ an initial episode clearing whole 
MarginD(∅) with c1, c2 and one of the original cops. This is always possible (even with 
an invisible robber) since the subgraph of U(D) induced by MarginD(∅) consists of paths 
and cycles, and it is not reachable from the rest of D. Then we continue with original σ, 
while for each v ∈ V3(D) we iteratively add “leapfrog episodes” (in the aforementioned 
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way) which clear whole MarginD
γ (v) using c1, c2 in a leapfrogging manner from v, right 

after an original cop lands on v (irrespectively of the robber moves).
Note that after each added episode, the cops c1, c2 are again free. Subsequently to 

an added episode as above, we also skip from σ all (potential) future cop moves to the 
vertices of MarginD(∅) or MarginD

γ (v) \ {v}, respectively. Consequently, this makes our 
new strategy monotone if σ is such.

So, the new strategy σ′ is 2-special monotone by its definition, and it remains to prove 
that each play by σ′ is cop-win. The whole game would clearly be cop-win (but non-
monotone) if we only added episodes. Then, firstly, the initial episode clears MarginD(∅), 
and the robber can never return there by its definition which justifies skipping of sub-
sequent cop moves to MarginD(∅) in σ′. Secondly, consider a play γ by σ′ and a vertex 
x ∈ MarginD

γ (v) \ {v} where v ∈ V3(D). Then x is cleared during the leapfrog episode at 
v, and x cannot be reached from V3(D) otherwise then from v or possibly from another 
vertex cleared in γ before v, by the definition of MarginD. Hence it follows from assumed 
monotonicity of σ that x will not be reachable again by the robber in γ. Hence the robber 
is finally caught in γ. �
Lemma 4.9. Let D be a digraph such that in the DAG-width (Kelly-width, directed path-
width) game, k ≥ 3 cops have a 2-special monotone winning strategy against the robber 
in D. If D′ = D/(s, t) is obtained by contracting a 2-contractible arc (s, t) in D, then k
cops have a 2-special monotone winning strategy against the robber in D′.

Proof. We refer to the proof of Lemma 4.8. If s, t ∈ MarginD(∅), then the claim is 
clear since 3 cops are always enough for the initial episode of a 2-special strategy. If 
s, t ∈ MarginD

γ (v) for some v ∈ V3(D) (and possibly s = v or t = v), then the case 
is similarly easy for each such play γ; the leapfrog episode from v simply gets shorter. 
Now assume s ∈ MarginD(∅) while t ∈ MarginD

γ (v); in D′, the set MarginD′

γ (v) increases 
by the vertices of MarginD(∅) reachable from s, but that again is no problem for the 
leapfrog episode from v.

It remains to consider the interesting last case of s ∈ MarginD
γ (v) and t ∈ MarginD

γ (w)
for some v 
= w ∈ V3(D) in a play γ. Then (t, s) /∈ E(D). Since t ∈ ReachD

2 (v), by defini-
tion, w is cleared in γ later than v. Let q be the vertex of D′ resulting from contraction 
of (s, t). By Definition 4.4, q 
→∗

(D′\w) v. Hence, for S = ReachD′

2 (q) \ MarginD
γ (w), 

the new leapfrog episode from v in D′ can safely skip the vertices of S; it is now 
MarginD′

γ (v) = MarginD
γ (v) \ S and MarginD′

γ (w) = MarginD
γ (w) ∪ S. This already 

gives the desired 2-special monotone winning strategy in D′. �
Proof of Theorem 4.7. If k cops can catch the robber in a digraph D using strategy σ, 
they can do so in any subdigraph H ⊆ D using the strategy σ|H, i.e. the strategy σ
restricted to H. We therefore focus on the case of arc contractions (cf. Proposition 4.5). 
We first build a 2-special monotone winning strategy for k+2 ≥ 3 cops as in Lemma 4.8. 
Then we iteratively apply Lemma 4.9 onto this case, and so finish the proof. �
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For the last claim, recall that “closed” means there is a constant c such that, for each 
digraph D, the δ-width of any directed topological minor of D is at most δ(D) + c.

Corollary 4.10. DAG-width, Kelly-width and directed path-width are closed under taking 
directed topological minors.

The résumé of this section is a strong suggestion that the property of being closed 
under taking directed topological minors is indeed a natural requirement for any “cops-
and-robber based” digraph width measure. See Section 6 for the consequences.

Complexity of testing directed topological minors. In the rest of this section, we conclude 
our discussion of directed minors with considering the complexity of deciding whether 
a given digraph is a directed topological minor of another digraph. We show that this 
problem is hard by giving a reduction from the 2-Linkage problem, which is the fol-
lowing problem. Let D be a digraph and let s1, s2, t1, t2 be pairwise different vertices 
of D. A 2-linkage for {(s1, t1), (s2, t2)} is a pair (P1, P2) of vertex-disjoint directed paths 
where Pi is a (si, ti)-path in D for i ∈ {1, 2}.

Proposition 4.11. (See [17].) The 2-Linkage problem, given a digraph D and {(s1, t1), 
(s2, t2)} where s1, s2, t1, t2 are pairwise different vertices of D, to decide whether D has 
a 2-linkage for {(s1, t1), (s2, t2)}, is NP-complete.

Theorem 4.12. There exists a digraph H such that the problem, given a digraph D, to 
decide whether H is directed topological minor of D, is NP-complete.

Proof. Since the problem is clearly solvable in non-deterministic polynomial time, it 
remains to show that the problem is NP-hard. We reduce from the 2-Linkage problem. 
The proof goes in two steps. We first show that the 2-Linkage problem remains hard 
on digraphs where every vertex has at most three neighbours.

Let D, {(s1, t1), (s2, t2)} be an instance of the 2-Linkage problem. Let D′ be a di-
graph such that V (D′) = V (D) ∪ {s′1, s′2, t′1, t′2}, where s′1, s

′
2, t

′
1, t

′
2 are new vertices, 

and A(D′) = A(D) ∪ {(s′1, s1), (s′2, s2), (t1, t′1), (t2, t′2)}. Obviously D has a 2-linkage for 
{(s1, t1), (s2, t2)} if and only if D′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Next, we modify 
large-degree vertices. We obtain digraph D′′ from D′ by iteratively executing, for ev-
ery vertex x with dD′(x) ≥ 4, the following sequence of operations: delete x, introduce 
dD′(x) new vertices x1, . . . , xdD′ (x), add the arcs (xi, xi+1) for 1 ≤ i < dD′(x), assign 
the in-neighbours of x as in-neighbours to the vertices x1, . . . , xj where j = |N in

D′(x)|, 
and assign the out-neighbours of x as out-neighbours to the remaining vertices. Observe 
that x is replaced by a digraph with vertices of degree at most 3, and reachability is 
preserved. In particular, it holds that D′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)} if and only 
if D′′ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Since the construction of D′′ requires only 
polynomial time, this shows that 2-Linkage is NP-complete on digraphs of maximum 
degree at most 3 due to Proposition 4.11.
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Fig. 5. Digraph H from the proof of Theorem 4.12.

For the second step of the proof, we continue with D′′ and {(s′1, t′1), (s′2, t′2)}. We 
introduce three new vertices and make them in-neighbours of s′1. Similarly, we make 
three new vertices out-neighbours of t′1, and four new vertices become in-neighbours of 
s′2 and another four new vertices become out-neighbours of t′2. Let D∗ be the resulting 
digraph. It holds that s′1, s′2, t′1, t′2 are the only vertices of D∗ of degree more than 3. We 
want to show that D∗ has a 2-linkage for {(s′1, t′1), (s′2, t′2)} if and only if the digraph H
depicted in Fig. 5 is a directed topological minor of D∗. For the first implication, let D∗

have a 2-linkage for {(s′1, t′1), (s′2, t′2)}. Thus, there are a directed (s′1, t′1)-path P1 and 
a directed (s′2, t′2)-path P2 in D∗ that are vertex-disjoint. Hence, D∗ has a subgraph F

that contains the vertices of P1 and P2 and the fourteen new vertices for D∗, that are 
connected only to s′1, s

′
2, t

′
1, t

′
2. By Lemma 4.6 we can contract both P1 and P2 to a single 

arc each. Therefore H is a directed topological minor of D∗. For the converse, let H be 
a directed topological minor of D∗. Due to the definition, there is a subgraph H ′ of D∗

such that H is isomorphic to a digraph that is obtained from H ′ by only contracting 
2-contractible arcs. Since all vertices of H have degree different from 2, all arcs of H are 
either arcs of H ′ or result of a contraction. In particular, the two vertices of degree 4 
of H correspond to s′1 and t′1 of D∗, and the two vertices of degree 5 of H correspond 
to s′2 and t′2 of D∗. That is because these four vertices are the only vertices of D∗ of 
degree larger than 3. By definition of 2-contractible arc, a path between two vertices of 
a degree greater than two can be contracted to an arc only if it directed path between 
these two vertices. Hence, since H is obtained from H ′ by only contracting contractible 
arcs, there are a directed (s′1, t′1)-path P1 and a directed (s′2, t′2)-path P2 in H ′ that 
are vertex-disjoint. Since H ′ is a subgraph of D∗, P1 and P2 are directed paths in D∗, 
and therefore, D∗ has a 2-linkage for {(s′1, t′1), (s′2, t′2)}. This completes the proof of the 
theorem. �

The complexity result of Theorem 4.12 shows that it is already difficult for relatively 
simple digraphs to decide whether they are directed topological minor of some given 
digraph. I.e. the “directed topological minor” decision problem is not fixed-parameter 
tractable with the number of vertices of the minor as a parameter.

A natural question is to ask how the “directed topological minor” problem behaves on 
restricted input digraphs. It has been shown that the generalization of the 2-Linkage

problem to arbitrary numbers of given pairs, that is called the Linkage problem (given 
a digraph D and pairs of pairwise different vertices, decide whether the pairs can be 
joined by vertex-disjoint directed paths) is NP-complete on acyclic digraphs [48]. It is 
not difficult to see that the proof of Theorem 4.12 can be extended to prove the next 
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result. In particular, if the input digraph D is acyclic, all construction steps yield again 
acyclic digraphs.

Theorem 4.13. The problem, given two acyclic digraphs D and H, to decide whether H
is directed topological minor of D, is NP-complete.

5. Hard MSO1 problems for {1, 3}-regular planar graphs

In the proof of the core result of the paper, Theorem 6.6, we make use of the fact that 
there exist MSO1-definable problems that are NP-hard even on a very restricted graph 
class, the class of {1, 3}-regular planar graphs. We call an undirected graph {1, 3}-regular 
planar if it is planar and all its vertices have degree either one or three. We note that 
a similar topic has already been addressed by Makowsky and Mariño [39] who show 
that 3Sat reduces to a certain MSO1-definable property on planar graphs of degree at 
most 3. Their reduction, however, uses vertices of degree 2 while we need to avoid them 
here (cf. condition (c) in Theorem 5.1).

Many problems that are hard on general graphs admit efficient algorithms on planar 
graphs and particularly on {1, 3}-regular planar graphs. Examples include variants of the
Graph Colouring problem. Recall that for k ≥ 1, a graph G is k-colourable if each 
vertex of G can be assigned one of k colours such that adjacent vertices receive different 
colours. It is well-known that every planar graph is 4-colourable and that it is NP-hard
to decide whether a planar graph is 3-colourable [24], while Brooks’ Theorem [7] says 
that all {1, 3}-regular graphs are 3-colourable with a single exception of K4.

On the other hand, some other traditional hard problems such as Maximum Inde-

pendent Set remain NP-hard on {1, 3}-regular planar graphs. However, the decision 
version of this problem is not MSO1-definable; it belongs to a wider class of problems 
called EMSO1—see [12].

To give an example of a natural, MSO1 definable, graph problem that is hard on 
{1, 3}-regular planar graphs, we observe the following: Deciding whether the square of 
a {1, 3}-regular planar graph is 4-colourable is NP-hard [15]. Squares of planar graphs 
may not be planar, but the 4-colourability problem of the square of a graph admits a 
reformulation as a colouring problem for the input graph itself: given a graph G, decide 
whether G admits a 4-colouring such that the neighbours of each vertex receive pairwise 
different colours. We call this NP-hard problem Fair 4-Colouring of G, and it is easy 
to formulate it in the MSO1 language (cf. Definition 2.4).

In this section, we show a stronger result covering a wide range of problems. We 
prove that every MSO1 property ϕ efficiently translates into another MSO1 property ψ

such that a graph H satisfies ϕ if and only if a certain {1, 3}-regular planar graph G

satisfies ψ. The graph H can be an arbitrary graph, and the graph G is efficiently 
computable from H. The constructed property ψ is, importantly, invariant under taking 
subdivisions of G. Consequently, every MSO1-definable problem that is hard on general 
graphs translates into a hard problem for {1, 3}-regular planar graphs and their arbitrary 
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subdivisions. The formal statement is given by Theorem 5.1 which we prove in this 
section.

Theorem 5.1. For every pair (H, ϕ) where H is an undirected graph and ϕ is an 
MSO1-definable property, there exists a pair (G, ψ) that satisfies the following condi-
tions:

a) G is a {1, 3}-regular planar graph and ψ is an MSO1-definable property,
b) H |= ϕ if and only if G |= ψ,
c) for every subdivision G1 of G: G1 |= ψ if and only if G |= ψ,
d) ψ depends only on ϕ and |ψ| = O(|ϕ|).

Furthermore, the pair (G, ψ) can be computed from (H, ϕ) by a polynomial-time algo-
rithm.

Notice, particularly, the important technical condition c) of the theorem, which states 
that the artificially constructed property ψ is invariant under any subdivision of the 
graph G.

We prove Theorem 5.1 in the following sequence of three relatively easy claims, taking 
advantage of the clear fact that interpretability of logical theories (see Section 2) is a 
transitive concept.

Lemma 5.2. The MSO1 theory of all simple (undirected) graphs is efficiently interpretable 
in the MSO1 theory of simple planar graphs.

We believe that Lemma 5.2 is a folklore known statement, but since we have not 
found an explicit reference, we present an illustrating proof for it. (Alternatively, one 
can adjust the reduction of [39] to achieve a similar goal.)

Proof. For start, we define the formula deg1(x) ≡ ∀y, z [(adj(x, y) ∧ adj(x, z)) → y =
z] ∧ ∃y adj(x, y) expressing that x is of degree 1 (in the model G). Furthermore, the 
formula

con(u, v,X) ≡ ∀Y ⊆ X ∃ y, z
[
(y ∈ Y ∨ y = u) ∧ (z /∈ Y ∨ z = v) ∧ adj(y, z)

]
(1)

expresses the property that the subgraph induced by X ∪ {u, v} connects u to v, and

mcon(u, v,X) ≡ con(u, v,X) ∧ ∀Y (Y � X → ¬ con(u, v, Y )) (2)

says that X is a minimal connection (a path) between u, v.
Let G be the class of all simple graphs, and P the class of planar simple graphs. 

Following Definition 2.6, the formula α1 defining the domain (vertex set in this case) of
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Fig. 6. The crossing-gadget modelling, in planar G, an edge crossing of GI ∼= H.

a graph GI ∼= H ∈ G inside G ∈ P is given as

α1(v) ≡ ¬ deg1(v) ∧ ∀x(adj(x, v) → ¬ deg1(x)) . (3)

The underlying idea is that we would like to use some vertices of a planar graph G ∈ P

to model edge “crossings” of H ∼= GI , see in Fig. 6. Hence we “mark” each of such 
supplementary vertices with a new neighbour of degree 1.

It remains to interpret the adjacency relation βadj
1 (u, v) for GI . Notice that the cross-

ing gadget in Fig. 6 uses a unique “marked” 4-cycle to model each crossing, and we can 
identify all such 4-cycles in G with a formula crgadg(C) ≡ σ∧ (|C| = 4) ∧∀x ∈ C¬α1(x)
where σ routinely describes the possible edge sets of a 4-cycle on a given set of vertices C. 
The shortcut | . | = 4 has an obvious implementation in MSO. Then we use

βadj
1 (u, v) ≡ ∃X

[
∀x ∈ X (¬α1(x)) ∧ mcon(u, v,X)∧

∧ ∀C
(
(crgadg(C) ∧X ∩ C 
= ∅) → |X ∩ C| = 3

)]
. (4)

The meaning of βadj
1 (u, v) is that there exists a path P between u, v using only (besides 

u, v) marked internal vertices X, and such that P intersects every crossing-gadget 4-cycle 
in exactly three vertices which ensure that P is not “making a turn” at a crossing.

The last step in the proof is to verify the two conditions of Definition 2.6. While the 
second condition is trivially true since βadj

1 is a symmetric binary relation, the first one 
requires an efficient algorithm constructing, for each H ∈ K , a graph GH ∈ L such 
that GI

H
∼= H. This is done as follows:

i. A “nice” drawing of H in the plane is found (and fixed) such that no two edges 
cross more than once, no three edges cross in one point, and no edge passes through 
another vertex.

ii. For every degree-1 vertex w ∈ V (H), the unique edge {x, w} ∈ E(H) is replaced 
with a path of length 3 on {x, w, w1, w2} where w1, w2 are new vertices. (This is 
needed since degree-1 vertices have special meaning in the interpretation.)

iii. Finally, every edge crossing is naturally replaced with a copy of the gadget from 
Fig. 6. The resulting planar graph is named GH .

It is routine to verify that GI
H

∼= H. �
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Fig. 7. The vertex-gadget of Lemma 5.3, replacing vertices of H with {1, 3}-regular parts in G.

Lemma 5.3. The MSO1 theory of all simple undirected graphs is efficiently interpretable in 
the MSO1 theory of simple {1, 3}-regular graphs. Moreover, this interpretation preserves 
planarity.

Proof. Let G be the class of all simple graphs, and R denote the class of all simple 
{1, 3}-regular graphs. We start the proof by showing a construction, for H ∈ G , of the 
graph G = GH ∈ R such that GI ∼= H in the intended interpretation I.

For each vertex v ∈ V (H) of degree d, we create a new vertex rv adjacent to two 
(three if d = 0) other new vertices of degree 1. If d > 0, then we also create a new 
bicoloured (black–white) cycle Cv of length 2d + 2 such that each its black vertex is 
adjacent to a new vertex of degree 1, one of the white vertices is adjacent to rv, and 
the d edges formerly incident with v in H are now one-to-one attached to the remaining 
d white vertices of Cv. See Fig. 7. The resulting graph is our GH . Notice that if H is 
planar, then the cyclic order of edges incident with each Cv can be preserved, and so 
GH will also be planar.

The domain of H can be identified within GH with the formula

α2(v) ≡ ∃x, y
[
x 
= y ∧ adj(v, x) ∧ adj(v, y) ∧ ∀z

(
(adj(z, x) ∨ adj(z, y)) → z = v

) ]
(5)

meaning simply that v has (at least) two neighbours of degree 1.
Before interpreting the adjacency relation of H in GH , we have to identify the cycles 

Cv from our construction. Notice that these are the only induced cycles of GH with the 
property that every second of their consecutive vertices has a neighbour of degree 1 (for 
instance, each edge of GH coming from an edge of H has both ends with all neighbours 
of degree 3). In this sense we write


(U) ≡ cycle(U) ∧ ∀x, y ∈ U
[
adj(x, y) →∨

z=x,y
∃w

(
adj(z, w) ∧ ∀t (adj(t, w) → t = z)

) ]
(6)

where cycle(U) is an MSO1 predicate saying that U induces a cycle in the graph, and 
finally,

βadj
2 (u,w) ≡ ∃U,W ∃u1, u2 ∈ U,w1, w2 ∈ W


(U) ∧ 
(W ) ∧ adj(u1, w1) ∧ adj(u2, u) ∧ adj(w2, w) . (7)
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We have finished description of the intended interpretation I, and it is now straight-
forward that GI

H
∼= H for every H ∈ G , cf. Definition 2.6. The proof is complete. �

Lemma 5.4. For every MSO1 formula ϕ there exists an MSO1 formula ϕ1 such that the 
following holds: For every {1, 3}-regular graph G and every subdivision G1 of G, it is 
G1 |= ϕ1 if and only if G |= ϕ. Furthermore, |ϕ1| = O(|ϕ|) and ϕ1 is computable from 
ϕ in polynomial time.

Proof. An alternative view of the situation is that we are interpreting the MSO1 theory 
of {1, 3}-regular graphs in the class of all their subdivisions. We construct ϕ1 as the 
formula ϕI in such an interpretation I : Since G is {1, 3}-regular, we simply identify the 
domain of G (its vertex set) inside G1 with α3(v) ≡ ¬ deg2(v) where deg2(v) routinely 
expresses that v is of degree two in G1.

We moreover recall (1) the MSO1 formula con(u, v, X) meaning that u is connected 
to v via the vertices of X (in G1). The adjacency relation of G is then replaced with 
βadj

3 (u, v) ≡ ∃X
(
con(u, v, X) ∧ ∀y ∈ X deg2(y)

)
. Clearly, G1 |= βadj

3 (u, v) if and only if 
u and v are connected with a path in G1 created by subdividing an edge {u, v} of G. 
The rest follows trivially. �
Proof of Theorem 5.1. We apply the chain of interpretations I1, I2, I3 from Lem-
mas 5.2, 5.3, and 5.4 in this order to the formula ϕ, and obtain the resulting for-
mula ψ ≡ ((ϕI1)I2)I3 . Following the constructive proofs of the aforementioned lemmas, 
we construct a graph G such that H ∼= (GI2)I1 . Notice that the interpretations are ap-
plied in reverse order (cf. Fig. 1). Then, part b) of the statement of Theorem 5.1 follows 
from Definition 2.6, and part c) follows from Lemma 5.4. Part d) is true since the inter-
pretations I1, I2, I3 are all efficient, i.e., are computable in polynomial time, and each of 
the translated formulas grows linearly in size. �
6. Nonexistence of good digraph width measures

In this core section we finally prove some nearly optimal negative answers to the 
questions raised in the Introduction and at the end of Section 3. To recapitulate, we 
have asked whether it is possible to define a digraph width measure that is closed under 
some reasonable notion of a directed minor (e.g., Definition 4.4) and that is still powerful 
(Definition 3.1) analogously to ordinary treewidth. We also recall the property of being 
treewidth-bounding (which we want to avoid) from Definition 3.3.

Recall that a digraph width measure δ is closed under taking directed topological 
minors if there is an absolute constant c such that, for each digraph D, the δ-width of 
any directed topological minor of D is at most δ(D) + c. By Corollary 4.10 this is indeed 
so for the major existing measures. We moreover give the following relaxed definition to 
make our negative results slightly stronger:
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Definition 6.1. A digraph width measure δ is weakly closed under taking directed topo-
logical minors if there exists a computable function w such that, for each digraph D, the 
δ-width of any directed topological minor of D is at most w

(
δ(D)

)
.

Although the aforementioned three requirements are enough to state the core nonex-
istence result in latter Theorem 6.7, we mention one more technical property that a 
reasonable digraph width measure should possess—we do not want to allow the mea-
sure to “keep computationally excessive” information in the orientation of edges. This 
requirement is important in intermediate Theorem 6.6. Formally:

Definition 6.2. A digraph width measure δ is efficiently directable if there exist a com-
putable function h, and a polynomial-time computable function r : G → D (from the 
class of all graphs to that of digraphs), such that for every undirected graph G ∈ G , we 
have U(r(G)) = G and

δ(r(G)) ≤ h( min{δ(D) : D a digraph s.t. U(D) = G}) .

To explain, a digraph width measure δ is efficiently directable if, given any undirected 
graph G, one can orient its edges in time polynomial in |G| to obtain a digraph with 
near-optimal δ-width. Quite many width measures possess this natural property, as the 
following proposition shows.

Proposition 6.3. DAG-width, Kelly-width, digraph clique-width, and bi-rank-width are all 
efficiently directable.

Proof. As noted in Section 3, DAG-width and Kelly-width attain their globally minimum 
values on DAGs. On the other hand, clique-width and bi-rank-width attain an optimal 
value on symmetric orientations of graphs (replacing each edge by a pair of opposite 
arcs). Therefore given an undirected graph, one can easily orient its edges to obtain a 
digraph whose width is optimal wrt. to each of these width measures. �

Furthermore, to better illustrate the practical meaning of the words “to keep compu-
tationally excessive information in the orientation of edges”, we point out in advance the 
counteractive example of Proposition 6.10: It is possible to encode the 3-colourability of 
a graph in a low-width orientation of its edges, and in this way to “cheat” when claiming 
fixed parameter tractability of the 3-Colouring problem on general graphs wrt. such 
an artificial parameter. Proposition 6.10 is an example of how one might cheat using 
encodings.

Our coming proofs also rely on some ingredients from the Graph Minors:

Theorem 6.4. (See [45].) If H is a planar undirected graph, then there exists a number nH

such that for every G of treewidth at least nH , H is a minor of G.
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Proposition 6.5 (Folklore). If H is a minor of G and the maximum degree of H is three, 
then H is a topological minor of G.

With all the ingredients at hand, we now state and prove our first main result.

Theorem 6.6. Let δ be a digraph width measure with the following properties

a) δ is not treewidth-bounding;
b) δ is weakly closed under taking directed topological minors;
c) δ is efficiently directable.

Then δ is not powerful unless P = NP.

Proof. We assume that δ is powerful and show that for every MSO1-definable property 
ϕ of undirected graphs there exists a polynomial-time algorithm that decides, given 
as input an undirected graph H, whether H |= ϕ. Since, by Example 2.5, there are 
MSO1 properties ϕ such that deciding whether H |= ϕ is NP-hard, this would imply 
that P = NP.

Given an MSO1-formula ϕ and an undirected graph H, we construct a {1, 3}-regular 
planar graph G and an MSO1-formula ψ as in Theorem 5.1. Let G1 be the 1-subdivision 
of G (i.e. replacing every edge of G with a path of length two). We claim that, under 
the assumptions (a) and (b), there exists an orientation D of G1 such that δ(D) ≤ k, for 
some constant k dependent only on δ.

We postpone the proof of this claim, and show its implications first. Since δ is ef-
ficiently directable, by Definition 6.2 and the existence of such D, we can efficiently 
construct another orientation D1 of G1 such that δ(D1) ≤ h(k), for some computable 
function h. Note that since k is a constant, the width of D1 is at most a constant. 
Let ψ1 be the (directed) MSO1 formula obtained from ψ by replacing adj(u, v) with 
(arc(u, v) ∨ arc(v, u)). Then, by Theorem 5.1, H |= ϕ iff D1 |= ψ1, and hence we have 
a polynomial reduction of the problems H |= ϕ onto D1 |= ψ1. Since δ is assumed to 
be powerful, the latter problem can be solved by an XP algorithm wrt. the constant 
parameter h(k), that is, in polynomial time.

We now return to our claim. Since δ is not treewidth-bounding, there is k′ ≥ 0 such 
that the class U = {U(D) : δ(D) ≤ k′} has unbounded treewidth. By Theorem 6.4, 
there exists D0 such that δ(D0) ≤ k′ and U(D0) contains a G1-minor. Since the maxi-
mum degree of G1 is three, by Proposition 6.5, G1 is a topological minor of U(D0) and 
hence some subdivision G2 of G1 is a subgraph of U(D0). Therefore there exists D2, 
a subdigraph of D0, with U(D2) = G2. Finally, by Lemma 4.6 one can contract 2-paths 
in D2, if necessary, to obtain a digraph D3 with U(D3) = G1. Clearly D3 is a directed 
topological minor of D0 and since δ is weakly closed under taking directed topological 
minors, we have δ(D3) ≤ k = h′(k′) for some computable function h′ dependent on δ. 
This completes the proof of our claim and the theorem. �
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Secondly, we further strengthen Theorem 6.6 by removing even the assumption (c) of 
efficient directability as follows.

Theorem 6.7. Let δ be a digraph width measure with the following properties

a) δ is not treewidth-bounding;
b) δ is weakly closed under taking directed topological minors.

Then δ is not powerful unless NP ⊆ P/poly.

A small price we have to pay for the stronger formulation in Theorem 6.7 is the need for 
a stronger complexity assumption, namely that NP � P/poly instead of NP 
= P. Recall 
that P/poly denotes the polynomial-time complexity class with a polynomially-bounded 
advice function, i.e. the class of languages that have polynomial-size circuits. By the 
Karp–Lipton theorem [32], NP ⊆ P/poly would imply that the polynomial hierarchy 
collapsed to the level ΣP

2 (which is not considered likely).

Proof of Theorem 6.7. We start the proof similarly to that of Theorem 6.6—assume 
that δ is powerful and show that then for every MSO1-definable property ψ of undi-
rected graphs there exists a polynomial-time algorithm that, given as input an undirected 
graph G and a polynomial-size advice depending only on |V (G)|, decides whether G |= ψ. 
By Theorem 5.1, we may assume G to be {1, 3}-regular planar and ψ invariant under 
subdivisions of G.

To informally see how one can trade efficient directability of the width measure δ for 
a polynomially-bounded advice function A depending only on the input size, it is helpful 
to deconstruct the proof of Theorem 6.6: The crux of the former proof is in showing that, 
given a {1, 3}-regular planar graph G, there exists an orientation D of the 1-subdivision 
G1 of G with small δ-width. While the former existential proof of D subsequently needed 
efficient directability of δ to actually construct some (possibly different) orientation D1
with small δ-width, we now bypass that point with a constructive argument for D. 
Precisely, we ask the advice A to give us a δ-optimal orientation of a suitably-sized grid 
(a “generic picture”) in which we then find our particular D as a topological minor.

Firstly, we recall the notion of a cubic grid (also known as a wall or hexagonal 
grid [13]), and denote by Hr the 1-subdivision of the r × r cubic grid (see Fig. 8). 
Note that Hr is always planar. The fact (a) that δ is not treewidth-bounding together 
with Theorem 6.4 and Proposition 6.5 imply there exists a constant k′ ≥ 0 such that 
members of the class U = {U(D) : δ(D) ≤ k′} contain Hr as topological minors for 
arbitrarily large values of r. So, for any r some orientation D′

r of a suitable subdivision 
of Hr is a subdigraph of some D+

r ∈ U .
Secondly, though this D′

r may be very large, we can again use Lemma 4.6 about 
contracting 2-paths to argue that there exists a directed topological minor Dr of D′

r

such that U(Dr) = Hr. Using (b), we get that δ(Dr) ≤ k = w(k′) is bounded irre-
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Fig. 8. Graph H6, the 1-subdivision of a 6 × 6 cubic grid.

spectively of r, and so is δ(Do) ≤ k for any directed topological minor Do of Dr using 
Proposition 4.5.

And, thirdly, it is known that any cubic planar graph G on n vertices is a topological 
minor of a cn × cn cubic grid where c is a universal constant [1], and that one can 
embed G in such a grid in time O(n logn) [18]. This clearly extends to {1, 3}-regular 
planar graphs G. We can now tie up the loose threads as follows.

Let G be a given {1, 3}-regular planar graph on n vertices. We ask our polynomially-
bounded advice function A to give us a digraph F = A(n) such that U(F ) = Hr

where r = cn, and F is a directed topological minor of some member of the aforemen-
tioned U . Then we construct an embedding of G into Hr, and consequently obtain a 
subdigraph D1 of D such that U(D1) is a subdivision of G. Hence δ(D1) ≤ k. Let, 
moreover, ψ1 be the (directed) MSO1 formula obtained from ψ by replacing adj(u, v)
with (arc(u, v) ∨ arc(v, u)). Since our ψ is invariant under subdivisions of {1, 3}-regular 
graphs, G |= ψ is equivalent to D1 |= ψ1.

So far, the construction of D1 and ψ1 clearly falls into the complexity class P/poly. 
If δ was powerful, then we could decide D1 |= ψ1 in XP time wrt. constant width 
δ(D1) ≤ k, i.e. in P time. Hence we would get a P/poly time algorithm for deciding G |= ψ

(equivalent to D1 |= ψ1). To finish the proof it remains to note that (Theorem 5.1) there 
exists abundance of formulas ψ for which the decision problem G |= ψ is NP-hard. �
Remark 6.8. Note that the proof of Theorem 6.7 also shows another possible “intermedi-
ate” reformulation of Theorem 6.6; one in which the condition (c) of efficient directability 
is required to hold only for subdivisions of cubic grids (instead of for all graphs).

Necessity of the assumptions. Discussing once again the core outcome of this section—
that a powerful digraph width measure essentially “cannot be stronger” than ordinary 
undirected treewidth, unless NP � P/poly—brings us to a natural question of whether 
the technical assumptions of the result are necessary, or, put differently, whether our 
result can be strengthened by weakening (some of) its essential assumptions. We address 
this question in the remainder of this section.
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First of all, the assumption (a) of δ not being treewidth-bounding is obviously un-
avoidable in order to deal with the richer universe of digraphs (cf. Section 3).

Next, the assumption (b) of δ being closed under taking directed topological minors 
has been intensively discussed in Section 4, namely in connection with the undirected 
case and cops-and-robber game characterizations. Here we moreover argue that both 
Theorems 6.6 and 6.7 are the strongest possible in that one cannot relax the condition (b) 
to “closed under subdigraphs” (or even under well-studied butterfly minors or digraph 
immersions) while retaining the same conclusion.

For that purpose we construct an example of an artificial width measure which at-
tains its “power” by subdividing every edge with a tower-exponential number of new 
vertices (and thus giving sufficient time margin for lengthy computation—an idea oc-
curring, slightly differently in the undirected setting, also in [39]). Since this is not a 
desirable behaviour of a width measure, it provides additional strong justification for 
condition (b) of both Theorems 6.6 and 6.7. Though, we remind the readers of the re-
lated result of [23] which actually addresses the case of digraph width measures which 
are only monotone under taking subdigraphs; the conclusion is then accordingly weaker 
and stronger complexity assumptions are used in the proofs.

Proposition 6.9. There exists a powerful digraph width measure δ such that

a) δ is not treewidth-bounding;
b) δ is monotone under taking subdigraphs;
c) δ is efficiently directable.

Moreover, the same remains true if we replace (b) with

b′) δ is monotone under taking subdigraphs of D and such contractions of arcs a ∈ A(D)
that create no new directed paths in D/a (i.e., under butterfly minors), or with

b′′) δ is monotone under taking digraph immersions of D. A digraph H is an immersion 
of D if V (H) is mapped injectively into V (D) such that the edges of H are mapped 
into edge-disjoint directed paths of D connecting the respective vertex images.

Proof. We are going to apply the following modified version of Courcelle’s Theorem [9]: 
There exists a computable function g such that for all digraphs D and MSO2 definable di-
graph properties ϕ, one can decide whether D |= ϕ in time O

(
g(|ϕ| + |V3(D)|) · |V (D)|

)
.

Recall that V3(D) ⊆ V (D) denotes the subset of those vertices having at least three 
neighbours in D. The original version of Courcelle’s theorem states something stronger—
it uses the quantifier depth (rank) of ϕ instead of |ϕ| and the treewidth of U(D) instead of 
|V3(D)|—but for undirected graphs. The extension to digraph MSO2 is straightforward 
(and not strictly needed here).

We give an explicit definition of δ. For an undirected graph G, we denote by distG(u, v)
the length of a shortest path between vertices u and v in G; if there is no such path in 



R. Ganian et al. / Journal of Combinatorial Theory, Series B 116 (2016) 250–286 281
G then distG(u, v) = ∞. Let g be the function as in Courcelle’s theorem as stated 
previously. Without loss of generality, we can assume that g is non-decreasing. For a 
digraph D, we define

δ(D) =
{

1, if distU(D)(u, v) ≥ g(2 · |V3(D)|) for all pairs u 
= v ∈ V3(D);
|V (D)|, otherwise.

(8)

We first show that δ fulfils the claimed properties. First, notice that δ does not depend on 
the orientation of edges; that is, U(D1) = U(D2) readily implies δ(D1) = δ(D2). Hence, 
(c) δ is efficiently directable in linear time. Second, if we take any undirected graph G
(of arbitrarily large treewidth) and subdivide every edge of G with g(2 · |V (G)|) vertices, 
then δ(D) = 1 holds for every orientation D of G = U(D). Therefore, (a) δ cannot be 
treewidth-bounding.

Third, concerning (b), let D be a digraph and let F be a subdigraph of D. We have to 
show that δ(D) ≥ δ(F ). This is clearly true if δ(D) = |V (D)|, and so assume δ(D) = 1. 
Take any vertex pair u, v ∈ V3(F ) ⊆ V3(D). Then by our assumption, distU(D)(u, v) ≥
g(2 · |V3(D)|), and g(2 · |V3(D)|) ≥ g(2 · |V3(F )|) by assumed monotonicity of g. Hence 
distU(F )(u, v) ≥ distU(D)(u, v) ≥ g(2 · |V3(F )|), and consequently δ(F ) = 1 ≤ δ(D).

It remains to show that δ is powerful. Let ϕ be an MSO1-definable (undirected) 
property, and let D be an input digraph. We simply apply Courcelle’s theorem to decide 
U(D) |= ϕ, and prove that this is an XP (even FPT) algorithm wrt. the parameter δ(D). 
If δ(D) = |V (D)|, then indeed O

(
g(|ϕ| + |V3(D)|) · |V (D)|

)
= O

(
g(δ(D)) · |V (D)|

)
for 

every fixed ϕ. So assume δ(D) = 1. If every component of U(D) contains at most one 
cycle, then the treewidth of D is at most two and the case follows trivially. Otherwise, 
some two vertices of V3(D) are connected by a path and so |V (D)| > g(2 · |V3(D)|). 
Then the run-time bound of Courcelle’s theorem gives O

(
g(|ϕ| + |V3(D)|) · |V (D)|

)
=

O
(
max{g(2|ϕ|), |V (D)|} · |V (D)|

)
= O(|V (D)|2) for fixed ϕ.

As for the condition (b′), we simply extend the previous arguments. Note that if 
a 2-path P between u, v ∈ V3(D) has “alternately oriented” arcs (as in Fig. 3), then 
no arc of P is contractible without introducing new directed paths. If, informally, this 
happened for all possible 2-paths in D, then taking butterfly minors in D would be 
almost equivalent to taking subdigraphs of D.

Formally, let S(D) ⊆ V (D) denote the subset of those vertices s in D that either s

has no in-neighbours (i.e., s is a source) or s has no out-neighbours (i.e., s is a sink). 
Instead of (8) we give the following modified definition:

δ′(D) =

⎧⎪⎨
⎪⎩

1, if for all pairs u 
= v ∈ V3(D), every 2-path in D between u, v

has at least g(2 · |V3(D)|) internal vertices in S(D);
|V (D)|, otherwise.

(9)

This measure clearly again satisfies (a) and (c), and Courcelle’s algorithm on D is in 
FPT wrt. the width δ′(D), too.
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To prove (b′) for δ′, we proceed as follows. Let D be a digraph and let F be a 
subdigraph of D. If δ(D) = |V (D)|, then clearly δ(F ) ≤ δ(D), and so assume δ(D) = 1. 
Take any 2-path P between a pair u, v ∈ V3(F ) ⊆ V3(D). Then P is obtained by 
contracting some arcs in a path (undirected) Q ⊆ D. Since Q is a union of (at least one) 
2-paths in D, by the assumption δ(D) = 1 we have |V (Q) ∩ S(D)| ≥ g(2 · |V3(D)|) ≥
g(2 · |V3(F )|). Notice that if a is an arc in D with both ends in S(D), then its contraction 
necessarily creates a new path in D/a and so such a contraction of a is not allowed 
in (b′). Therefore, |V (P ) ∩ S(F )| ≥ |V (Q) ∩ S(D)| ≥ g(2 · |V3(F )|), and consequently 
δ(F ) = 1 ≤ δ(D).

Finally, (b′′) has the same proof as (b′) since a vertex which is a source or a sink 
cannot be immersed in a digraph by definition. �

Lastly, we take a closer look at the property of δ being efficiently directable. Though 
this condition (c) of Theorem 6.6 is, after all, completely avoided in stronger Theorem 6.7, 
it nevertheless deserves further discussion. It is not unreasonable to assume a digraph 
width measure to be efficiently directable since most known digraph-width measure are, 
e.g. Proposition 6.3. Furthermore, efficient directability prevents digraph-width measures 
from “keeping excessive information” in the orientation of arcs, such as in the following 
example:

Proposition 6.10. There exists a digraph width measure δ such that

a) δ is not treewidth-bounding;
b) δ is monotone under taking directed topological minors;
c) for every 3-colourable graph G there exists an orientation D, U(D) = G, such that 

δ(D) = 1;
d) and for every k ≥ 1, on any digraph D with δ(D) ≤ k, one can decide in (FPT) 

time O(3k · n2) whether U(D) is 3-colourable, and find a 3-colouring if it exists.

To briefly comment on this result, we emphasize the following. On the one hand, there 
is nothing specially interesting in solving the 3-colourability problem on digraphs—this is 
taken just as an example of an NP-complete problem, and it is no surprise that solutions 
to NP-complete problems can be somehow encoded in the orientation of arcs. On the 
other hand, it is in our opinion really unexpected that one can naturally encode an 
“excessive information” (an NP-completeness oracle, to be precise) in the orientation of 
arcs such that this encoding is invariant (b) under taking directed topological minors.

Proof of Proposition 6.10. We start by defining our digraph width measure δ. For a 
digraph D,

δ(D) =
{

1, if the arcs of D encode a 3-colouring of U(D);
|V (D)|, otherwise.

(10)
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We say that the arcs of a digraph D encode a 3-colouring if, for every directed (s, t)-path 
in D with s, t ∈ V3(D), we have that either s has no in-neighbours (i.e. s is a source) or 
t has no out-neighbours (i.e. t is a sink).

The crucial property of this definition (10) is that if δ(D) = 1, then U(D)
is 3-colourable. To see this, assume that the arcs of D encode a 3-colouring, and 
let S1, S2, S3 be a tripartition of V3(D) such that S1 is the set of all sources, S3 is 
the set of all sinks, and S2 the remaining vertices. The sets S1 and S3 are obviously 
independent in U(D) as they contain only source/sink vertices. If S2 was not indepen-
dent, then there would be an arc a = (u, v) forming a directed path of length 1 between 
u, v ∈ S2 ⊆ V3(D), and so one of u, v would actually belong to S1 ∪ S3, a contradiction. 
As the remaining vertices of V (D) \ V3(D) have at most two neighbours each, we can 
use a straightforward greedy algorithm to extend the partition (S1, S2, S3) of V3(D) into 
a partition of V (D) into three independent sets. Therefore U(D) is 3-colourable.

We now have to show that δ fulfils all the four conditions of Proposition 6.10. We 
start with (c); assume a graph G with a proper 3-colouring c : V (G) → {1, 2, 3}. We 
construct an acyclic orientation D, U(D) = G, by directing every edge {u, v} ∈ E(G)
as (u, v) ∈ A(D) such that c(u) < c(v). Then δ(D) = 1 since D actually has no directed 
path of length three. Consequently, for the complete bipartite graph Kn,n there is an 
orientation D′ such that δ(D′) = 1 and U(D′) = Kn,n, but the treewidth of Kn,n is n. 
Hence also (a); δ is not treewidth-bounding.

To prove (d); let D be any digraph. If δ(D) = k ≥ 2, then n = |V (D)| = k. By trying 
all possible 3-colourings we can solve the task in time O(3k · n2). On the other hand if 
δ(D) = 1, then (10) D encodes a 3-colouring, and we can compute a valid 3-colouring of 
U(D) in time O(n2), as outlined above.

The last step is to show (b); that δ is monotone under taking directed topological 
minors for every k ≥ 1. Let D be a digraph. If δ(D) ≥ 2, then δ(D) = |V (D)| and thus 
δ(F ) ≤ δ(D) for every directed topological minor F of D. Therefore let δ(D) = 1, i.e. 
D encodes a 3-colouring. For a directed topological minor F of D, assume any directed 
(s, t)-path in F with s, t ∈ V3(F ) ⊆ V3(D). By Definition 4.4, no (s, t)-path can be 
created by contractions of 2-contractible arcs in D, and so a directed (s, t)-path exists 
in D. Then, up to symmetry, s is a source in D since δ(D) = 1. Again by the definition 
of 2-contractible arcs, s must be a source in F , too. Consequently δ(F ) = 1 ≤ δ(D), and 
the condition is proved. �
7. Conclusions

Looking at the main result of this paper (Theorem 6.7) from a yet slightly different 
perspective than in Section 3, one can conclude the following:

Any algorithmically useful digraph width measure δ that is substantially different 
from undirected treewidth must possess the following property: There exist digraphs 
of low δ-width such that δ grows very high on their directed topological minors.
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Since “standard” cops-and-robber games remain closed on directed topological mi-
nors, we conclude that a digraph width measure that allows efficient decisions of 
MSO1-definable digraph properties on classes of bounded width cannot be defined or 
(even asymptotically) characterized using such games. All this gives more weight to 
the argument [22] that bi-rank-width [31] and its generalizations are the best (though 
not optimal) currently known candidates for a good digraph width measure from the 
algorithmic perspective.

Nevertheless, the area of treewidth-like digraph width measures, and of the related 
cops-and-robber games, remains a very interesting topic in pure combinatorics, with 
solid structural foundations and abundance of fundamental open questions. We believe 
that the results and suggestions contained in our paper will also lead to new ideas and 
research directions in this area, which seems to be stuck at this moment. Perhaps, we 
should return to the roots and think again from scratch what a digraph width measure 
should be “good for”.
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