J 2016

Effect of spontaneous activity on stimulus detection in a simple neuronal model

LEVÁKOVÁ, Marie

Basic information

Original name

Effect of spontaneous activity on stimulus detection in a simple neuronal model

Authors

LEVÁKOVÁ, Marie (203 Czech Republic, guarantor, belonging to the institution)

Edition

Mathematical Biosciences and Engineering, SPRINGFIELD, AMER INST MATHEMATICAL SCIENCES, 2016, 1547-1063

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10103 Statistics and probability

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.035

RIV identification code

RIV/00216224:14310/16:00087784

Organization unit

Faculty of Science

UT WoS

000373930200008

Keywords in English

Fisher information; latency coding; spontaneous activity; renewal process; neuroscience

Tags

Tags

International impact, Reviewed
Změněno: 5/4/2017 10:27, Ing. Andrea Mikešková

Abstract

V originále

It is studied what level of a continuous-valued signal is optimally estimable on the basis of first-spike latency neuronal data. When a spontaneous neuronal activity is present, the first spike after the stimulus onset may be caused either by the stimulus itself, or it may be a result of the prevailing spontaneous activity. Under certain regularity conditions, Fisher information is the inverse of the variance of the best estimator. It can be considered as a function of the signal intensity and then indicates accuracy of the estimation for each signal level. The Fisher information is normalized with respect to the time needed to obtain an observation. The accuracy of signal level estimation is investigated in basic discharge patterns modelled by a Poisson and a renewal process and the impact of the complex interaction between spontaneous activity and a delay of the response is shown.

Links

GA15-06991S, research and development project
Name: Analýza funkcionálních dat a související témata
Investor: Czech Science Foundation
MUNI/A/1234/2015, interní kód MU
Name: Matematické a statistické modelování (Acronym: Matematické a statistické modelování)
Investor: Masaryk University, Category A