Real-time Analysis of NetFlow Data for Generating
Network Traffic Statistics using Apache Spark

Milan Cermék, Tomas Jirsik, Martin Lastovicka
Institute of Computer Science, Masaryk University
Botanickd 68a, 602 00 Brno, Czech Republic
E-mail: {cermak, jirsik, lastovicka}@ics.muni.cz

Abstract—In this paper, we present a framework for the real-
time generation of network traffic statistics on Apache Spark
Streaming, a modern distributed stream processing system. Qur
previous results showed that stream processing systems provide
enough throughput to process a large volume of NetFlow data
and hence they are suitable for network traffic monitoring. This
paper describes the integration of Apache Spark Streaming into
a current network monitoring architecture. We prove that it is
possible to implement the same basic methods for NetFlow data
analysis in the stream processing framework as in the traditional
ones. Moreover, our stream processing implementation discovers
new information which is not available when using traditional
network monitoring approaches.

I. INTRODUCTION

Monitoring high-speed networks puts high demands on
storage and computation capabilities. Thus, flow aggregation
and export compatible with IPFIX IETF standards (based on
NetFlow v9) has become widely used for traffic monitoring
and analysis. Flow monitoring, however, only allows batch
data processing where data is processed in separate, typically
5 minute intervals. This approach introduces inconvenient
delays to data analysis which decreases the efficiency of such
factors as network anomaly detection or threat identification.
A solution to the inconvenient delays is to process all data
in real-time which is possible due to the use of contemporary
distributed stream processing systems. Our previous results [1]
showed that modern stream processing systems are able to pro-
cess large amounts of data in real time and provide sufficient
throughput to monitor network traffic.

However, analysing data using a stream processing
paradigm is different from the traditional approaches and has
its own challenges:

o stream processing cannot recalculate old data,

« goals have to be specified in advance,

o all results are available in (near)real-time,

« scaling allows the processing of a higher amount of data
and more complex calculations.

In this paper, the suitability of a stream processing systems
is demonstrated for network traffic analysis. We have chosen
the Apache Spark system for the demonstration as it offers
easy management and high versatility in terms of the running
environment and proprietary processing methods [2]. Apache
Spark was integrated into a contemporary system for network

978-1-5090-0223-8/16/$31.00 (© 2016 IEEE

data monitoring and the specifics of the integration will be
described in this paper. Furthermore, network data analysis
was implemented into the stream paradigm with respect to its
specifics and the results are discussed.

II. SYSTEM ARCHITECTURE

Traditional flow monitoring architecture consists of net-
work probes, which generate flows from network data, and
a collector for data storage. Our system architecture for the
demonstration is based on the interconnection of two basic
components: IPFIXcol [3] and the stream processing environ-
ment of Apache Spark. An overall view of the components
and their connections is depicted in Figure 1.

Fig. 1. Network flow data analysis framework architecture.

IPFIXcol is a flexible IPFIX flow data collector designed
to be easily extensible by plugins. In our demonstration, we
use only part of its wide functionality — data acquisition from
multiple network probes and their transformation into a data
stream. The data are not stored, only forwarded for further
processing to Apache Spark. The collector to the Spark con-
nection is made via the TCP socket, into which the collector
feeds its data in JSON format. As the IPFIX protocol [4]
supports variable fields, the JSON messages format is not fixed
but adapted to it.

Details about Apache Spark stream processing and its
deployment are available in our paper [1] about a performance
benchmark of distributed stream processing systems. In con-
trast with the benchmark we have used Spark’s component,
named “accumulator” to hold data and share them between
processing nodes. The other change is in the input data
serialisation. In our demonstration, the input is IPFIX data
which is serialised into POJO (Plain Old Java Object).

The last part of the framework architecture is a graphical
interface for presenting statistics. The computation results
from Spark are loaded into a web server and visualised by
various types of charts. With the architecture described above,

the statistics are calculated in parallel and results are displayed
as a statistics graph which refreshes with real-time data.

The demonstration cluster consists of 7 virtual machines,
one is dedicated to IPFIXcol, five to Spark and one to the
web server. The following configuration is the same for all
machines:

o Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz,

« 4GB 1600M MHz DIMM DRAM EDO,

« 85GB SCSI Disk with 53¢1030 PCI-X Fusion-MPT Dual

Ultra320 SCSI,

o 10 Gbit/s network connection, 1 Gbit/s virtual NICs.

The software used for the demonstration is the following:

e VMware vSphere 6.0 e Scala 2.9.2

o Ubuntu 14.04.2 LTS o Apache Spark 1.4.1

¢ Oracle Java 1.8.0

III. SYSTEM DEMONSTRATION

We demonstrate the utilisation of stream processing in
network flow data analysis to generate and report statistics
of network traffic. These statistics provide basic information
about the volume of flows, packets or bytes transported via
an observation point in a network. The aggregation interval
for the statistics generation is usually set to five minutes [5]
and so is the refresh rate for the statistics. However, the five
minute lag is too long in critical situations when network
security is at stake and real time data is needed. Moreover,
aggregation over such a long period may hide important events
that would be observable without the aggregation. Therefore,
stream processing comes as a natural choice for the generation
of statistics that need to be available in real-time. The reporting
provides a periodic overview of the network traffic. A report
usually consists of selected information gathered over a certain
amount of time. When implementing the reporting in stream
processing paradigm, it is important to realise that data are
processed on the fly and no historical data analysis is available.
Therefore, the report structure (i.e. the computed statistics)
needs to be defined in advance and it is not possible to create
historical report using stream data processing.

The statistics we chose to implement and demonstrate in
stream paradigm are:

« Basic statistics — the total number of flow, packets and

bytes transported via an observation point in a network.

o Traffic over HTTP and HTTPS - a simple overview of

the network traffic that shows only connections with web
servers.

For generating reports we chose to demonstrate reports with
two different frequencies (short term — one minute, and long
term — one hour). Each of the reports provides the following
information:

« Basic statistics — the time series of the number of flow,

packets and bytes observed over the report period.

o TOP 10 statistics — we present a chart of the TOP 10

most frequently used ports for TCP/UDP network traffic.

o Host statistics — for a selected host in the network, we

provide the number of communication partners, volume
of transmitted data, and most used ports.

The analysis of the statistics generated by the stream
processing showed increased volatility in results compared to
the results of traditional approaches. The increased volatility
is caused by a shorter interval for collecting the statistics.
Nevertheless, this approach provides more accurate informa-
tion about the network. We were able to observe short, but
strong bursts of the network traffic that were lost due to the
aggregation used in traditional batch approaches.

The results of our demonstration show that it is possible
to use stream processing to analyse network data. We were
able to successfully implement basic network data analytic
methods used in traditional batch network data analysis. We
have observed that using stream processing for data analysis
reveals new information from the network data as we can
increase the granularity of observation. The increased granu-
larity introduces more volatility in the data and may discover
information that are lost in traditional approaches.

IV. CONCLUSION

This paper has presented a pilot exploitation of data stream
processing systems for NetFlow data analysis. We were able to
interconnect state-of-the-art probes for network data monitor-
ing with the Apache Spark system. The interconnection allows
us to process the same data as in traditional approaches. Next,
we implemented basic methods for network traffic monitoring.
The results show that stream processing approach is suitable
for network traffic analysis. It is capable of performing the
same analyses as traditional approaches and even opens new
ways how to explore data thanks to the increased granularity
of the observations. Our future work will further explore the
utilisation of stream processing in network monitoring. We
plan to transform current batch-based detection methods into
the stream paradigm.

ACKNOWLEDGEMENT

This research was supported by the Technology Agency of
the Czech Republic under No. TA04010062 Technology for
processing and analysis of network data in big data concept.

REFERENCES

[1] M. Cermék, D. Tovarnak, M. Lastovicka, and P. Celeda, “A Performance
Benchmark for NetFlow Data Analysis on Distributed Stream Processing
Systems,” in Network Operations and Management Symposium (NOMS),
2016 IEEE, 2016, [To appear].

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX Association, 2010.

[3] CESNET, z. s. p. o., “IPFIXcol,” Web page, 2015, accessed January
10, 2016. [Online]. Available: https://www.liberouter.org/technologies/
ipfixcol/

[4] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of
Flow Information,” RFC 7011 (INTERNET STANDARD), Internet
Engineering Task Force, Sep. 2013. [Online]. Available: http://www.ietf.
org/rfc/rfc7011.txt

[5] R. Hofstede, P. éeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX,” Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 2037-2064, 2014.

