Detailed Information on Publication Record
2015
Towards an efficient data assimilation in physically-based medical simulations
PETERLÍK, Igor and Antonín KLÍMABasic information
Original name
Towards an efficient data assimilation in physically-based medical simulations
Name in Czech
Směrem k efektivní datové asimilaci medicínských simulací založených na fyzice
Authors
PETERLÍK, Igor (703 Slovakia, guarantor, belonging to the institution) and Antonín KLÍMA (203 Czech Republic, belonging to the institution)
Edition
Washington, D.C. , USA, Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2015, p. 1412-1419, 8 pp. 2015
Publisher
IEEE
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/00216224:14610/15:00086693
Organization unit
Institute of Computer Science
ISBN
978-1-4673-6798-1
UT WoS
000377335600241
Keywords in English
Data Assimilation; Kalman Filtering; Non-linear elasticity; Finite Element Method; Patient-specific Modeling
Tags
International impact, Reviewed
Změněno: 27/8/2019 11:58, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
Computer simulation of soft tissues is rapidly be- coming an important aspect of medical training, pre-operative planning and intra-operative navigation. Whereas in medical training, generic models are usually employed, both planing and navigation require patient-specific modeling. However, creating a patient-specific model is a challenging task, as many of the mechanical parameters of the organ tissues are unknown. One way of addressing the issue is to extend the deterministic simulation by methods based on stochastic modeling. In this paper we focus on parameter estimation in models with large number of degrees of freedom based on a variant of Kalman filtering. The main contribution of the paper is a detailed description of an integration of two advanced concepts of numerical modeling: we employ a state-of-the-art method of data assimilation based on reduced-order Kalman filtering in order to perform parameter estimation of a finite-element model of non-linear elasticity used in medical simulations. In order to assess the method, we present a preliminary evaluation of the accuracy of the parameter estimation as well as the performance using synthetic data with added noise. We also evaluate the parallelized version of the prediction phase and finally we describe further perspectives which, as we believe, will bring the data assimilation of models with many parameters closer to the real-time processing.