J 2015

A Goldberg-Sachs theorem in dimension three

NUROWSKI, Pawel and Arman TAGHAVI-CHABERT

Basic information

Original name

A Goldberg-Sachs theorem in dimension three

Authors

NUROWSKI, Pawel (616 Poland) and Arman TAGHAVI-CHABERT (250 France, belonging to the institution)

Edition

Classical and Quantum Gravity, BRISTOL, Institute of Physics, 2015, 0264-9381

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 2.837

RIV identification code

RIV/00216224:14310/15:00081645

Organization unit

Faculty of Science

UT WoS

000355238400010

Keywords in English

three-dimensional pseudo-Riemannian geometry; Goldberg-Sachs theorem; congruences of geodesics; algebraically special spacetimes; topological massive gravity

Tags

Tags

International impact, Reviewed
Změněno: 23/3/2016 15:53, Ing. Andrea Mikešková

Abstract

V originále

We prove a Goldberg-Sachs theorem in dimension three. To be precise, given a three-dimensional Lorentzian manifold satisfying the topological massive gravity equations, we provide necessary and sufficient conditions on the trace-free Ricci tensor for the existence of a null line distribution whose orthogonal complement is integrable and totally geodetic. This includes, in particular, Kundt spacetimes that are solutions of the topological massive gravity equations.

Links

GP14-27885P, research and development project
Name: Skoro izotropní struktury v pseudo-riemannovské geometrii
Investor: Czech Science Foundation