Detailed Information on Publication Record
2015
A Goldberg-Sachs theorem in dimension three
NUROWSKI, Pawel and Arman TAGHAVI-CHABERTBasic information
Original name
A Goldberg-Sachs theorem in dimension three
Authors
NUROWSKI, Pawel (616 Poland) and Arman TAGHAVI-CHABERT (250 France, belonging to the institution)
Edition
Classical and Quantum Gravity, BRISTOL, Institute of Physics, 2015, 0264-9381
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 2.837
RIV identification code
RIV/00216224:14310/15:00081645
Organization unit
Faculty of Science
UT WoS
000355238400010
Keywords in English
three-dimensional pseudo-Riemannian geometry; Goldberg-Sachs theorem; congruences of geodesics; algebraically special spacetimes; topological massive gravity
Tags
International impact, Reviewed
Změněno: 23/3/2016 15:53, Ing. Andrea Mikešková
Abstract
V originále
We prove a Goldberg-Sachs theorem in dimension three. To be precise, given a three-dimensional Lorentzian manifold satisfying the topological massive gravity equations, we provide necessary and sufficient conditions on the trace-free Ricci tensor for the existence of a null line distribution whose orthogonal complement is integrable and totally geodetic. This includes, in particular, Kundt spacetimes that are solutions of the topological massive gravity equations.
Links
GP14-27885P, research and development project |
|