J
2016
Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic
GELETIČ, Jan, Michal LEHNERT a Petr DOBROVOLNÝ
Základní údaje
Originální název
Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic
Autoři
GELETIČ, Jan (203 Česká republika, garant, domácí), Michal LEHNERT (203 Česká republika) a
Petr DOBROVOLNÝ (203 Česká republika, domácí)
Vydání
Hungarian Geographical Bulletin, 2016, 2064-5031
Další údaje
Typ výsledku
Článek v odborném periodiku
Obor
10500 1.5. Earth and related environmental sciences
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/16:00090191
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
MUKLIMO_3; urban air temperature; Local Climate Zones; GIS; spatial modelling
Příznaky
Mezinárodní význam, Recenzováno
V originále
Using numerical models for the prediction of air temperature on a local scale represents progress in urban climatology. Although the MUKLIMO_3 simulations showed a number of uncertainties and customisation which must be improved (e.g. the classification of local climate zones seems to be too general as input for the Land Use Table), the model showed good performance in its approximation of the daily courses of air temperature in different urban environments. The degree of imprecision is highly dependent on the quality (e.g. representatives of meteorological measurement) and degree of generalisation (e.g. spatial resolution) of the input data. The model outputs may be used to study the development of the air temperature field in high temporal resolution (e.g. 60 minutes) but also for quantification of the effect of relief, land cover/use and weather conditions on local (urban) climate. The model is also useful for analysing UHIs. To reach a better performance the model must be validated in various cities with diff erent landscape structures throughout the moderate climate zone. Therefore, it is necessary to continue to study the model settings and try to prepare optimal inputs for better results.
Zobrazeno: 17. 11. 2024 00:32