D 2016

Learning Robust Features for Gait Recognition by Maximum Margin Criterion

BALÁŽIA, Michal and Petr SOJKA

Basic information

Original name

Learning Robust Features for Gait Recognition by Maximum Margin Criterion

Authors

BALÁŽIA, Michal (703 Slovakia, guarantor, belonging to the institution) and Petr SOJKA (203 Czech Republic, belonging to the institution)

Edition

USA, Proceedings of the 23rd IEEE/IAPR International Conference on Pattern Recognition (ICPR 2016), p. 901-906, 6 pp. 2016

Publisher

IEEE

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/00216224:14330/16:00090367

Organization unit

Faculty of Informatics

ISBN

978-1-5090-4847-2

UT WoS

000406771300153

Keywords (in Czech)

rozpoznávání podle chůze

Keywords in English

gait recognition

Tags

International impact, Reviewed
Změněno: 4/4/2018 17:04, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

In the field of gait recognition from motion capture data, designing human-interpretable gait features is a common practice of many fellow researchers. To refrain from ad-hoc schemes and to find maximally discriminative features we may need to explore beyond the limits of human interpretability. This paper contributes to the state-of-the-art with a machine learning approach for extracting robust gait features directly from raw joint coordinates. The features are learned by a modification of Linear Discriminant Analysis with Maximum Margin Criterion so that the identities are maximally separated and, in combination with an appropriate classifier, used for gait recognition. Experiments on the CMU MoCap database show that this method outperforms eight other relevant methods in terms of the distribution of biometric templates in respective feature spaces expressed in four class separability coefficients. Additional experiments indicate that this method is a leading concept for rank-based classifier systems.

Links

MUNI/A/0892/2015, interní kód MU
Name: Výzkum v aplikované informatice na FI MU (Acronym: VAIFIMU)
Investor: Masaryk University, Category A
MUNI/A/0935/2015, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A

Files attached