EventFlow: Network Flow Aggregation Based on
User Actions

Petr Velan
CESNET z.s.p.o.
Prague, Czech Republic
petr.velan@cesnet.cz

Abstract—Network flow monitoring is being supplemented
with an application flow visibility to provide more detailed
information about network traffic. However, the current con-
cept of flows does not provide a mechanism to keep track of
semantic relations between individual flows that are created as
a part of a single user action. We propose an extension to the
flow measurement, called EventFlow, which allows to preserve
relations between HTTP and DNS application flows that are
a part of single user action, most typically browsing a web page.
We describe an architecture of the EventFlow extension and
its limitations. A prototype implementation of the EventFlow
is introduced and evaluated on a packet trace from an ISP
network. We show that a significant number of flow records
can be recognised as a part of a single user action.

I. INTRODUCTION

The growth of cloud-based services increases the impor-
tance of network monitoring. Information about network traffic
behaviour can not only provide valuable information for per-
formance optimisation of applications and infrastructure but
also help to detect and mitigate attacks on applications and
their users. To better facilitate these demands, network flow
monitoring [1] solutions are starting to provide application
visibility [2], [3].

Application flow monitoring parses data from application
headers and adds application specific elements to flow records.
This way the information from application level can be easily
transferred to flow collectors, stored, and utilised together with
the information about the network communication. Current
approach is to treat separate application protocols individually,
e.g., develop an application processing module for each mon-
itored protocol [4]. However, connections between different
protocols are lost in this scenario. For example, when a user
wants to access a web page, several different flows records
are created. The DNS server must be contacted to resolve the
hostname of the web page to an IP address. After the basic
document is loaded, the user’s browser automatically loads
linked content, such as images, cascading style sheets, and
java script libraries. The generated requests are recorded as
flows, however, little relation between the flows is preserved.

Information about relations between individual flows can be
useful in several scenarios. First, when an advertisement on
a web page contains malware, the page can be traced using
the relation and notified of the malicious content. Second,
aggregates of the related flows can be created to simplify

978-1-5090-0223-8/16/$31.00 (© 2016 IEEE

behavioural analysis of network traffic. Moreover, the analysis
can use the additional information to improve its accuracy.
Last, traffic classification engines can also benefit from having
access to information about flow relations [5].

In this paper we present a flow monitoring extension, called
EventFlow, which allows to keep track of relations between
HTTP and DNS application flows. Information about flow
relation is inserted to flow records to keep track of individual
user actions, i.e., events. We develop a prototype of the
EventFlow extension and evaluate its properties on network
traffic trace from an ISP network. Results show that at least
10% of HTTP and DNS flow records form more complex
events. We believe, that this is only a lower bound and that
further improvements can be made to relate even more flows
into events.

The rest of the paper is structured as follows. Related work
is surveyed in Section II. We propose the architecture of
EventFlow measurement in Section III. Section IV describes
the implementation of the EventFlow prototype. Experimental
evaluation of the EventFlow prototype is performed in Sec-
tion V. The paper is concluded in Section VI.

II. RELATED WORK

Madhyastha and Krishnamurthy [6] propose a generic lan-
guage for application-specific flow sampling. Their language
allows applications to select flows with special properties so
that the negative impact of sampling on these applications is
minimised. This can be useful for intrusion detection systems
or traffic classification applications. Although the goal of this
work is different from ours, it also aims to improve the
collected data, so that traffic analysis applications can achieve
higher accuracy.

The authors of [7] also focus on improving quality of
sampled flow data. They show that the traffic classification
accuracy can be increased using related sampling, which
assigns higher probability to connections that are part of the
same application. The authors propose to use a source IP
address as a measure of relation between connection sessions.

Hu et al. [8] propose an entropy based aggregation system
to mitigate an impact of DoS attacks and worm spreads
on a network monitoring system. The main contribution of
their approach is a flow key attribute selection algorithm that
chooses key attributes by which the flows are aggregated. Two
dimensional hash table is used to implement their approach.

3)

—>
[HTTP Request] < [HTTP Response]
4)

2) 5)

D

[DNS Response]4—[DNS Request]

Fig. 1. Relations between HTTP and DNS requests and responses.

The aggregated flows are called metaflows. The main differ-
ence from EventFlow is that we label existing flows belonging
to same user action, while the metaflow is a substitute flow
for many flows created during a malicious network activity.

Dolberg et al. [9] introduce a multidimensional flow ag-
gregation aimed to reduce the volume of collected data. The
authors use tree structures for storing the data by chosen
dimension such as IP addresses or ports. EventFlow proposed
in our work might be used in this scenario to aggregate flows
by the same events.

III. EVENTFLOW ARCHITECTURE

This section describes the architecture of the EventFlow
monitoring. The goal is to label all flows that are the results of
a single user action with the same event identifier (EID). For
example, accessing http://www.w3.org/ creates 1 DNS request,
37 HTTP requests, and 8 HTTPS requests. We aim to assign
a single unique EID to the flows generated for all these DNS
and HTTP requests.

Four basic types of flows are recognised by the EventFlow:
HTTP requests, HTTP responses, DNS requests and DNS
responses. There are relations between these types of flows
in network traffic, as shown in Figure 1. When HTTP request
to a new site is performed, the IP address of the site must be
resolved first. Therefore, a DNS request is created. After the
request is observed, a reply usually follows, which results in
the relation 1). After the DNS reply arrives, the client knows
the IP address of the server and makes the HTTP request,
which creates the relation 2). An HTTP response follows the
request, as indicated by the relation 3). The HTTP response
can contain an HTML page which links to several additional
resources such as external style sheets or images. The loading
of these resources triggers more HTTP requests, resulting in
relation 4). When these requests point to previously unresolved
domains, new DNS requests are created, which introduces the
relation 5).

We base the EventFlow architecture on the relations be-
tween the requests and responses. When an HTTP or a DNS
flow is encountered, we must make sure that it is assigned the
same EID as the related flows. Therefore, we create four sets of
records: expected HTTP requests, expected HTTP responses,
expected DNS requests and expected DNS responses. When
processing an HTTP or a DNS flow, we add new record to the
set or sets it relates to. Then, when a next flow is processed,
it is matched against appropriate expected set to see whether

TABLE I
MATCHED FLOW PROPERTIES.

(=)

- .

| & £

= | 5| 2

5| 8| E £ £

ElE| 5|3 E|F

£l g 8 % S| w

@ | &R = E
Expected HTTP Request | « v |V

Expected HTTP Reply | v |V

Expected DNS Request v v

Expected DNS Reply VA v

it is a part of existing event. If it is, an EID of the event
is assigned to the flow record. For example, when a DNS
response is encountered, a new record is put into the expected
HTTP requests set (because of relation 2), see Figure 1). Then,
when an HTTP request is processed, we check the expected
HTTP requests set to see whether we are expecting this request
based on a previous DNS response. If the request is matched,
it is assigned the same EID as the DNS response.

Each of the sets of expected records uses different flow
properties to match a flow record. When matching an HTTP
request flow against the expected HTTP requests set, the
source IP address of the flow must match as well as the
requested domain or the URL, if available. Checking the
source IP address ensures that flows from different hosts
are not combined into a single event. A domain name is
checked for the records that were inserted in the set when
DNS reply was encountered. In case an HTTP response caused
the record to be inserted, the full URL is available, not only
the domain name. Replies are checked based on IP addresses
and destination port. Source port is not checked since the
services are expected to run on standard, well-known ports.
The DNS reply is also checked for transaction ID, which is
a unique identifier tying the request and response. However,
the DNSSEC extension is ignored and does not affect the
EventFlow. Therefore, any malicious responses would still be
part of an event. List of the used properties is provided in
Table I.

An expiration of the records from the expected sets must
be ensured. When a record from any of the expected sets
is matched, it is removed. However, many inserted records
will never be matched. For example, when a DNS request
is made to accommodate a different service than HTTP, the
expected HTTP request might never appear. We need to free
such records from the sets eventually. A timeout is used to
keep the expected sets from being congested by redundant
records. A timestamp is assigned to each record upon insertion
to a set. Then, each time the set is searched, records older
than the timeout are removed. The timeout should be as short
as possible to avoid blending of several events. However, it
should be at least as long as it takes to process the longest
user action, which might be up to a couple of seconds in case

Packet Parser

EvenFlow
Layer 3 Expected Sets
Tayer 4 Flow Cache D!
Applications . Insert 4
Packets Partial Flow Flow IPFIX

Update —— | Export | ——

DNS +URLSs +EID Protocol
Release

HTTP

URLs

Fig. 2. EventFlow prototype schema.

of complicated queries to slow sites.

There are several caveats to our approach and some limi-
tations of the architecture that should be addressed in the
future. Our approach does not handle HTTP redirection codes,
therefore the first request and the HTTP 3xx redirection re-
sponse are assigned different EID than the subsequent request
to the resource. This problem can be rectified simply by adding
a handler for the HTTP 3xx redirection responses that will put
a new record with the redirect URL to the expected HTTP
requests set.

Another limitation of our approach is that the URLs are only
extracted from HTML documents. However, modern web sites
often use a JavaScript code to request additional resources
through the Ajax technique. Such requests cannot be easily
matched to an event, since it would require to reconstruct the
complete web page and process the included JavaScript code,
which is infeasible for the flow monitoring system.

There are also several caveats that cannot be avoided.
Some of the requested documents might be cached by clients
which would cause EventFlow to lose track of related URLs.
However, cached DNS queries are of no consequence to the
EventFlow since no traffic is generated for them and no
information about a flow relation is lost. Actions of different
users can be mingled when Network Address Translation is
used. And finally, the growing deployment of HTTPS reduces
the usefulness of the EventFlow for the HTTP protocol.
Nevertheless, it can always be used in environments utilising
an HTTPS proxy such as data centres or enterprise networks.

IV. EVENTFLOW PROTOTYPE

We build the EventFlow prototype as a plugin for the Flow-
Mon [10] flow monitoring software. The FlowMon exporter
is a flexible flow exporter that provides support for various
extensions. These extensions are used to implement a support
for additional packet inputs, application protocol processing
and different export protocols. We utilise the capabilities of
the exporter to create an EventFlow extension plugin. The
prototype can either be deployed to process data on live
network or to analyse captured samples.

The FlowMon exporter consists of three main components
as shown in Figure 2. The first component is a packet parser.
It receives packets from the network and extracts informa-
tion from network to application layer of each packet. The
extracted information is used to create a partial flow record,
which contains all necessary information about the parsed

packet such as IP addresses, ports, timestamps, byte counter,
etc. It also contains application layer information when an
application parsing is performed. The partial flow record is
passed to the second component of the exporter which is a
flow cache. The partial record is either inserted as a new flow
record or it is used to update an existing flow record, which is
an aggregation of previous partial flow records. When a flow
record expires, it is released from the flow cache to an export
component. The purpose of the export component is to convert
raw flow records to a flow export protocol format such as
NetFlow [11] or IPFIX [12] and pass the flow records over
the network for further processing.

Plugins, that extend the FlowMon exporter to process spe-
cific application layer protocols, such as DNS or HTTP, have
access to several parts of the flow creation and export process.
Each plugin can request to see the raw packet payload, process
it, and add its own information to flow records, such as
HTTP Host, Content-Type, or Response Code. Furthermore,
the plugins are allowed to provide their own functionality for
insert, update, and release methods of the flow cache. And
last, each plugin defines how the information inserted into
flow records is processed by the export component.

The EventFlow prototype is implemented as an application
protocol extension. However, it also utilises the data provided
by other application plugins. The EventFlow combines infor-
mation from the DNS and HTTP protocols to detect relations
between flows, therefore it requires the DNS and HTTP
application plugins to be deployed as well. The prototype
extends the packet parser to extract URLs from HTML pages.
These URLs are sent together with partial flow record to the
flow cache, however, they are used only internally and they
are newer exported in the flow records. When a new flow
record is created in the flow cache, the expected sets (see
Section IIT) are searched for a match to the new record using
DNS, HTTP, and URL information provided in the partial
record. If a match is found, the new flow records is assigned
an Event ID (8 byte unsigned integer) of the matched record
from the expected sets. Otherwise, if no match is found, a new
EID is incrementally assigned to the new flow record. After
the flow is expired from the cache, the EID is a part of the
record and is sent by the export component along with the rest
of the flow record.

Using an 8 byte integer for EID and assigning it incremen-
tally to individual events ensures that there are no collisions
due to EID overflow in practice. However, an assignment
that is individual for each flow probe and persistent over
the reboots of the system would be required for a real-world
deployment. The EID is assigned only to flows of the HTTP
and DNS traffic, since it would provide no benefit to other
flows as event relation tracking is not implemented for other
protocols yet. Moreover, the size of the flows grows only by
8 bytes at maximum, which has negligible impact on the flow
collector disk space requirements.

V. EXPERIMENTAL EVALUATION

We evaluate the prototype in two scenarios. First, we
assess the functionality of the prototype on a simple example
web site. Once we have verified the functionality, we run
EventFlow on a packet trace from live network to determine
how many flows can be joined to events in real traffic. The
IPFIXcol [13] flow collector is used to collect and process the
generated flows. The main advantage of the collector is that it
can be easily configured to work with the Event ID element.

We do not evaluate the performance of the prototype in this
phase. We are aware of several performance inefficiencies that
need to be solved before any valuable results can be measured.
For example, one of the most expensive parts of the prototype
is the management of sets of expected records. We expect
that changing the underlying data structures will significantly
improve the performance.

A. Functional Evaluation

For the first scenario, we create a simple website with
two pages, each linking the other page, displaying an image,
and referencing a different JavaScript library. The evaluation
proceeds as follows. We request the first page in a browser and
few seconds after it loads we follow the link to the other page.
The packet trace of these actions is recorded and processed by
the EventFlow prototype, and the resulting flows are collected
by the IPFIXcol.

We expect to see a flow record for each of the requests and
responses. However, due to the HTTP pipelining the whole
communication with the web server hosting the test pages is
done using a single connection. Therefore, there is a pair of
flows for the accessing the two web pages with the linked
images (which were on the same server), two pairs of flows
for each off-site JavaScript library, and three pairs of DNS
flows for IP address resolution. There are 12 flows created in
this test scenario in total. The 12 flows are divided in two
events by the EventFlow prototype. The first event contains
flows for the two DNS requests, HTTP communication with
the web server and download of the first JavaScript library. The
second event does not contain an HTTP flow due to the HTTP
pipelining but contains the DNS request and the subsequent
download of the second JavaScript library.

The functional evaluation shows that the prototype correctly
recognises related flows and labels them as a part of the same
event. The flow exporter can be extended to handle HTTP
pipelining by creating new flow record for each pipelined
request. Such extension would make the measurement more
accurate and we plan to deploy it in the future.

B. Real Traffic Evaluation

The purpose of the real traffic test is to determine how
many flows can be joined into events. We collect a short
(approximately one minute) trace of 10 million packets from
an ISP network on ports 53 and 80 which are likely to be DNS
and HTTP packets. Table II shows statistics that describe the
packet trace as well as the results of the evaluation. We can see
that from the total number of more than 600 thousand flows

TABLE 11
REAL TRAFFIC EVALUATION STATISTICS.
Total Flows 613953
HTTP Requests 33294
HTTP Responses 49753
DNS Requests 197926
DNS Responses 224588
Events with > 1 Flow 28064
Flows in Events with > 1 Flow 55881
All Events 388749
Flows in All Events 418671

more than 400 thousand are part of events. Furthermore, over
55 thousand flows are part of events which contain more than
one flow. Therefore, we can conclude that more than 10 % of
observed HTTP and DNS flows are recognised as a part of
more complex events by the EventFlow prototype.

The number of flows in complex events is not as high
as might be expected given the large number of HTTP and
DNS requests and responses. We believe that this is caused
by a quite short time window of our trace, which is likely to
have captured large number of separate responses and requests.
Moreover, we believe that better results can be achieved by
fine-tuning the timeout of the records in the expected sets of
the EventFlow prototype.

VI. CONCLUSIONS

We have presented an EventFlow monitoring architecture
that allows to keep track of relations between HTTP and DNS
application flows, which can be used to simplify behavioural
analysis of network traffic, improve network threat detection
and network traffic classification. The changes to existing
flow monitoring architecture are negligible, which facilitates
wide deployment. The proposed architecture can be further
extended to handle more complex HTTP communication, such
as redirection return codes.

A prototype of EventFlow plugin for the FlowMon flow
exporter has been evaluated on a trace of 10 million packets.
We showed that more than 10 % of observed HTTP and DNS
flows are recognised as a part of more complex events by
our prototype. We believe that this result will improve on
longer packet trace as well as with more accurate settings of
the prototype. Prospective improvements to the prototype as
well as its more detailed evaluation, including a performance
evaluation, are left for a future work.

We believe that the network analysis will benefit from the
supplemental information about flow relations. Our work has
shown that it is possible to acquire such information without a
significant impact on an existing monitoring architecture and
that it is possible extend the flow monitoring to trace relations
of other application protocols.

Acknowledgements

This material is based upon work supported by the “CES-
NET E-infrastructure” project LM2015042 funded by the Min-
istry of Education, Youth and Sports of the Czech Republic.

[1]

[2]

[3]

[5]

[6]

[7]

REFERENCES

R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX,” Communications Surveys Tutorials,
IEEE, 2014.

L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. Vasilakos, “Software
Defined Monitoring of Application Protocols,” Computers, IEEE Trans-
actions on, vol. PP, no. 99, pp. 1-1, 2015.

P. Velan, T. Jirsik, and P. éeleda, “Design and Evaluation of HTTP Pro-
tocol Parsers for IPFIX Measurement,” in Advances in Communication
Networking, T. Bauschert, Ed., vol. 8115. Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 136-147.

ntop, “nProbe,” online, 2015. [Online]. Available: http://www.ntop.org/
products/netflow/nprobe/

Y. Wang, Y. Xiang, J. Zhang, W. Zhou, and B. Xie, “Internet traffic clus-
tering with side information,” Journal of Computer and System Sciences,
vol. 80, no. 5, pp. 1021 — 1036, 2014, special Issue on Dependable
and Secure Computing The 9th {IEEE} International Conference on
Dependable, Autonomic and Secure Computing.

H. V. Madhyastha and B. Krishnamurthy, “A Generic Language for
Application-specific Flow Sampling,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 5-16, Mar. 2008.

M. Lee, M. Hajjat, R. R. Kompella, and S. G. Rao, “A Flow Measure-

[8]

[9]

(10]

(11]
[12]

[13]

ment Architecture to Preserve Application Structure,” Comput. Netw.,
vol. 77, no. C, pp. 181-195, Feb. 2015.

Y. Hu, D.-M. Chiu, and J. C. S. Lui, “Entropy Based Adaptive Flow
Aggregation,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 698-711, Jun.
2009.

L. Dolberg, J. Francois, and T. Engel, “Efficient Multidimensional
Aggregation for Large Scale Monitoring,” in Proceedings of the 26th
International Conference on Large Installation System Administration:
Strategies, Tools, and Techniques, ser. lisa’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 163-180.

INVEA-TECH a.s., “FlowMon Probe,” online, 2015. [Online].
Available: https://www.invea.com/en/products-and-services/flowmon/
flowmon-probes

B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Internet Engineering Task Force, October 2004.

B. Claise, B. Trammell, and P. Aitken, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” RFC 7011, Internet Engineering Task Force, Sep. 2013.

P. Velan and R. Krej¢i, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes
in Computer Science, R. Sadre, J. Novotny, P. Celeda, M. Waldburger,
and B. Stiller, Eds., vol. 7279. Heidelberg: Springer Berlin Heidelberg,
2012, pp. 155-158.

