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Abstract—In recent years, we have been witnessing profound 
transformation of energy distribution systems fueled by Infor­
mation and Communication Technologies (ICT), towards the so 
called Smart Grid. However, while the Smart Grid design strate­
gies have been studied by academia, only anecdotal guidance 
is provided to the industry with respect to increasing the level 
of grid intelligence. In this paper, we report on a successful 
project in assisting the industry in this way, via conducting a 
large anomaly-detection study on the data of one of the power 
distribution companies in the Czech Republic. In the study, we 
move away from the concept of single events identified as anomaly 
to the concept of collective anomaly, that is itemsets of events 
that may be anomalous based on their patterns of appearance. 
This can assist the operators of the distribution system in the 
transformation of their grid to a smarter grid. By analyzing 
Smart Meters data streams, we used frequent itemset mining 
and categorical clustering with clustering silhouette thresholding 
to detect anomalous behaviour. As the main result, we provided 
to stakeholders both a visual representation of the candidate 
anomalies and the identification of the top-10 anomalies for a 
subset of Smart Meters. 

Index Terms—Smart Grids, Smart Meters, Anomaly Detection, 
Clustering, Frequent Itemset Mining. 

I. I N T R O D U C T I O N 

The Smart Grid can be regarded as an electricity network 
that benefits both from two-way cyber-secure communication 
technologies and computational intelligence for electricity 
generation transmission, substations integration, distribution 
and consumption to reach the goals of a clean, safe, secure, 
reliable, resilient, efficient, and sustainable infrastructure [1]. 

The investment into large-scale Smart Grid deployment can 
be very risky, as confirmed for instance by investment losses 
during the Xcel Energys SmartGridCity project [1], [2], 

There is a recent trend in adding more "smartness" in 
the Smart Grid infrastructure, so that the large amount of 
information that can be mined from normal usage can be used 
to drive the decision-making process and optimize the overall 
infrastructure management [3], [4]. This effect is enhanced by 
the two-way nature of the more modern infrastructures that 
allow operators to fine-tune parameters remotely based on the 
knowledge acquired from the operating conditions. 

In the this paper, we deal with anomaly detection from 
Smart Grid data, that is looking for specific patterns in Smart 
Meter's data streams that do not conform to expected be­
haviour. In general terms, anomaly detection is a broad concept 

that has been applied to different fields, ranging from systems 
intrusion detection to fraud detection, with varying definitions 
of expected behaviour [5]. Based on real data from one of 
the power distribution companies in the Czech Republic, we 
propose an approach for the detection of the anomalies in the 
Smart Metering infrastructure that could be useful to promptly 
intervene to investigate the cause of unexpected behaviour. 
Based on this analysis, we report also about the insights 
acquired in terms of extensions of the approach that would 
allow us to implement such online system within the Smart 
Grid infrastructure. 

The proposed approach is based on frequent itemset mining 
by encoding the different event types streamed from Smart 
Meters, applying segmentation of the itemsets and using 
categorical clustering for the evaluation of the itemsets and 
detection of unexpected patterns. The proposed approach is 
based on the analysis of event types from the Smart Meters. 
It allows us to detect anomalies that might have impact on the 
Smart Grid security, reliability or maintenance—for example 
suspicious manipulation with Smart Meter casing, under/over-
voltage in specific locations or failure to switch remotely 
controlled appliances. 

The paper is structured as follows. Section II overviews 
related work in the area of anomaly detection within Smart 
Grids. Section III then discusses the context of the study 
and provides descriptive information about the dataset. The 
anomaly detection approach is described in Section IV to­
gether with the rationale for its derivation. Section V presents 
the application within the Smart Grid domain according to 
the contextual information provided. The main evaluation and 
discussion from the experimental part is presented in Section 
V I , while Section VII brings up the conclusions. 

II. R E L A T E D W O R K 

As the Smart Grid implementation is a strategic act for 
many countries, extensive attention has been paid to the study 
of smart infrastructures in recent years [1], [6]. Fang et al. 
[1] divide the smart infrastructure into three subsystems: (1) 
the smart energy subsystem, concerned with power generation, 
transmission, and distribution, (2) the smart information sub­
system, concerned with information metering, measurement, 
and management, and (3) the smart communication subsystem, 
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concerned with wireless and wired communication technolo­
gies, and the end-to-end communication management. 

Within the smart information subsystem (2), which frames 
our work, significant advancement can be observed in both 
industry and academia. 

In industry, these projects are mainly led by electric utilities 
or related organizations, which are however often lacking 
expertise in information and communication technologies [1]. 
Evaluation of the devised strategies is hence realised rather via 
pilot projects than via analytical and simulation means. While 
simulation is not that uncommon within the design of smart 
energy subsystem (1) and smart communication subsystem (3), 
it is rather rare within the smart information subsystem (2) [7]. 

In academia, many approaches for the analysis of data 
flowing within the Smart Grid, and hence the identification of 
smart information, exist, mostly in the cyber-security domain 
[8], [9], Within the cyber-security, the approaches are mainly 
concerned with intrusion detection harming the confidentiality, 
integrity, or availability of the Smart Grid [10], [11], [12], 
although more work has been done on preventative measures, 
such as secure communication protocols and architectures in 
the Smart Grid [8], Overall, the cyber-security in the frame of 
Smart Grids is very well researched and hence we wi l l invest 
more effort in investigating the other domains. 

Besides cyber-security, the analysis of the Smart Grid 
information flow is concerned mainly with the detection of 
faults and failures [13], [14], [15], and to minor extent 
with the study of consumer behaviour [16]. Calderaro et 
al. [13] detect failures in data transmission and faults in 
the distribution network with the help of petri nets analysis 
and matrix operations. Kalaitzis et al. [14] study powerline 
faults (on the level of the amplitude, frequency, or phase of 
powerline signal) with the help of a sliding window approach 
in multivariate time series. He et al. [15] are concerned with 
fault detection and localization in transmission lines, using a 
network inference algorithm based on Markov random fields 
and dependency graphs. However, all these approaches are 
based on the powerline level (i.e. modelling and observing 
individual relays [13], powerline signal [14] or phasor angles 
across the transmission line buses [15]), not the information 
flow above it, which differentiates them from our aim. 

The application of clustering to Smart Grids data is not 
a novel idea, and has been successfully applied to Smart 
Grid data to steer towards a more intelligent Smart Grid 
infrastructure [3], [4]. However, applications are more specific 
to clustering customers according to behaviour from Smart 
Meters data [17] or looking into clustering sensor data to 
segment the network topology and identify set of clusters 
according to energy profiles [18]. 

III. C O N T E X T OF T H E S T U D Y 

This study was conducted in cooperation with the major 
energy distribution company in the Czech Republic, in which 
the smart metering infrastructure has been tested and examined 
in several pilot projects since 2006. The pilot projects have 
been part of the European Grid4EU initiative. Currently, 

there have been almost 40,000 Smart Meters deployed in 
total which constitutes about 1% of all consumers managed 
by the Distribution company. The individual pilot projects 
have specific goals, e.g. evaluation of available technologies, 
communication infrastructure, quality of service. 

In our case, we utilise the data sets from a project focus­
ing on local load management in low voltage power grids. 
The selected consumers (both households and industry) are 
equipped with Smart Meters that collect data about the power 
consumption profile. The data is periodically sent to the data 
concentrator which is installed at the Distribution Transforma­
tion Station (DTS)—there is one data concentrator per each 
DTS. From the data concentrator, the data is collected and 
stored by the Data Central (DC) server, which is located at 
the power grid operation centre. Besides the data related to the 
power consumption attributes, the individual devices generate 
variety of events used for the grid monitoring and maintenance. 

A central role is played by the Smart Meter, an electronic 
device used for the measurement and provision of billing 
information to customers [19]. In this study, we consider Smart 
Meters as data sources of data streaming, allowing the analysis 
of all data derived from the Smart Meters' operations. 

The Smart Meter events are used to notify the data central 
about important state changes that happened at the level of the 
Smart Meter, such as powering up or down of the meter, tariff 
and rate switching, time synchronization, etc... Each event 
belongs to one of possible 76 event types. 

A n event entry is described by the origin time, event type 
and a Smart Meter device it was created by. For the device, 
there is a number of additional attributes available, such as its 
GPS coordinates, date of installation, tariff category or type 
of deployment site (e.g. apartment, house, agriculture/industry, 
etc.). The entire dataset contains 364,107 event entries that 
have been collected from 381 Smart Meters over the time-
span from December 2014 to July 2015. 

IV. A N O M A L Y D E T E C T I O N A P P R O A C H DEFINITION 

When dealing with anomaly detection, one important dis­
tinction is based on the way we aggregate data to determine 
unexpected behaviour. We usually distinguish among: i) point 
anomalies, ii) context anomalies, and iii) collective anomalies 
[5]. A point anomaly means that one individual event instance 
can be considered anomalous when compared to the remaining 
data. For example, counting the number of occurrences of a 
"gateway on" event from a Smart Meter might be considered 
anomalous if its frequency is too low or high on a specific 
day. Context anomalies start from the assumption of dividing 
the behaviour from the context: the same behaviour might 
not be considered an anomaly if it happens in a different 
context. Based on the previous example, the same number of 
occurrences of "gateway on" might not trigger an anomaly de­
tection mechanism if they happen on a specific time of the day 
/ period of the year. Compared to point anomaly, we need to 
take into account the context of the event instance. The third— 
and more interesting for our context—category is referred to 
as collective anomaly. In this case, the event instance does 
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Fig. 1. Proposed Approach for Smart Meters anomaly detection (_E=set of 
events, iS=set of data segments, T=set of transactions, infrequent itemset, 
MFI=most frequent itemset, C=set of clusters). 

not represent an anomaly per se, but only if considered within 
the collection of all the other events instances. Continuing 
the previous example, we might consider as anomalous the 
collection of events "gateway on"/'gateway off"'/'gateway 
on","gateway off" rather than "gateway on","transmission 
start","gateway off". For this type of anomaly, looking at 
single event instances is not meaningful, as they need to be 
considered together with the other collection of events. 

A typical further characterization of anomaly detection is 
based on the availability of label data for the event instances 
that can constitute anomalies (supervised, semi-supervised and 
unsupervised approaches [5]). In the former category, there 
is the availability of labelled data for either all instances or 
positive instances, meaning usually one human expert dealing 
with labelling of each anomalous instance or the availability of 
some form of failure data from which labels can be derived— 
also known as tagging information. In our specific context, we 
did not have any of such information available, so we ruled-
out the option of applying a supervised classification approach 
for anomaly detection. In fact, due to the characteristics of the 
Smart Metering dataset we opted for what we can refer to as 
an unsupervised contextual and collective anomaly detection 
approach. The main reasons were the unavailability of tagging 
information, the needs to consider events within their context 
and within the broader concept of itemsets. 

Given all the considerations about the way to tackle the 
problem in the Smart Grid domain, our approach is similar to 
the one of Barbara et al. that has been successfully applied 

in the context of intrusion detection [20]. However, in our 
approach we use a different way to detect outliers — clustering 
silhouette indicators. Furthermore, by applying the approach to 
Smart Grids data streams we identified several improvements 
that we discuss in the paper. The approach is based on the idea 
to first identify clusters of what can be considered as normal 
behaviour, and then to look into itemsets that deviate from the 
knowledge learned from the dataset. We present in detail the 
steps of the approach (Fig. 1): 
Stepl. We first apply Association Rule Mining to identify 
frequent itemsets [21], that is sets of events instances that 
are more recurrent. For this, we need to identify sets of 
transactions from the data streams. We define one transaction 
as the set of all the items derived per one day and per each 
Smart Meter (Data Segmentation, Fig. 1, Stepl). Thus, each 
Smart Meter wi l l be associated with a list of daily transactions 
of operations; 
Step2. Based on the aforementioned concept of collective 
anomaly, we extract the most frequent itemsets from data 
transactions by applying the the Apriori algorithm [21]. This 
wi l l yield for each Transaction a list of frequent itemsets 
within each transaction (Frequent Itemsets Identification, Fig. 
1, StepZ). As an example, after running the first two steps we 
might end up with the following itemsets: 
{R2XR10n,Rate 2 switching} 
{Overcurrent L I ,Overcurrent L 3 } 

{R2XR10ff,R2XR10n} 
{R2XR10ff,R2XR10n,Rate 1 switching} 
[. . .] 
Step3. For each data segment, we have now the list of frequent 
itemsets derived from all the transactions. We look then for 
the Most Frequent Itemsets that are present in more than one 
segment (MFI Filtering, Fig. 1, Step3). The assumption is that 
the itemsets that appear in more than one segment can be 
considered as an initial normal behaviour, while the other can 
be considered potential anomalies at this stage; 
Step4. Following the concept of contextual anomaly, each 

frequent itemset is further augmented with additional infor­
mation, so that the same itemset in different segments wil l be 
represented by additional features, e.g. whether a working day 
(Contextual Information Enhancement, Fig. 1, Step4). Note 
that this wil l increase the number of features, but wi l l also 
increase the number of itemsets as the same itemset might 
appear in two different contexts (working day / non-working 
day). At this point, the additional features can be derived from 
additional data sources, not only Smart Meters—as long as 
they can be associated to the itemsets. A n example of itemsets 
at this stage: 
{R2XR10n,Rate 2 switching,week-day} 
{Overcurrent L I ,Overcurrent L3,week-day} 
{Overcurrent L I ,Overcurrent L3,week-end} 
[. . .] 
Step5. We cluster all the normal itemsets identified in Step2. 
The assumption is that we cluster these as representative of the 
normal behaviour (Clustering MFI', Fig. 1, Step5). We might 
also look at this stage from the clustered data if there are 
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Fig. 2. Clustering of 17 devices (n=681, k=10) 

itemsets that are isolated or do not fit well in their clusters. As 
the itemsets are represented by categorical / nominal variables, 
we use a categorical clustering based on entropy minimization 
[22] — used also in the original approach. To continue with 
the example, i f clustering the previous data with a number 
of clusters k — 2, we can get the following clusters as they 
minimize the entropy: 

{R2XR10n,Rate 2 switching,week-day} 
{Overcurrent L I ,Overcurrent L3,week-day} 
{Overcurrent L I ,Overcurrent L3,week-end} 

C2 
C2 
Step6. The final step looks into the identification of anomalies 
(Anomalies Identification, Fig. 1, Step6). In this step, we con­
sider again all the itemsets that were considered as potential 
anomalies in Step2. For each of them, we cluster them and we 
look how well they fit according to the clusters created with 
the previously clustered data. 

For this last step, to identify the goodness of fit of the 
new itemsets, we use the concept of clustering silhouette [23]. 
Given an itemset i, a(i) represents the average dissimilarity 
between all the other itemsets in i's cluster. Given all the other 
clusters (VCj wherei £ Cj), d(i,Cj) represents the dissimi­
larity of i with all the itemsets in C3 and b(i) — min(d(i, Cj)) 
represents the minimal distance of itemset i to the nearest 
cluster. The silhouette represents how well an element fits in 
its cluster: 

g j = b(i) - ail) 

ma,x(a,(i), b(i)) 

We can have three cases: 

• Si > 0: the itemset fits generally well into the cluster; 
• Si « 0: the itemset is clustered between two clusters; 
• Si < 0: the itemset is probably clustered in the wrong 

cluster, that is from the silhouette definition, the itemset 
has higher dissimilarity with the elements of the belong­
ing cluster than some nearby cluster; 

When looking for anomalies we look for the third type of 
cases, that is those in which the itemset does not fit well in 
created clusters. Furthermore, we can set a threshold value for 
the silhouette. In the next section we present the application 
of the approach to the Smart Meter data and we wi l l also use 
a visual representation of the clustering silhouette to aid in 
anomalies identification. 

V . A P P L I C A T I O N WITHIN T H E S M A R T GRIDS D O M A I N 

The first consideration in analysing the Smart Meter data is 
about parameters fine-tuning. Overall, for the frequent itemset 
mining we need to define support—proportion of transactions 
that contain a specific itemset—and confidence—for associ­
ation rules X Y, the proportion of the transactions 
that contain both X and Y. In the current analysis we used 
support=0.1 and confidences.8. Varying these parameters 
can bring a different number of itemsets considered in the 
initial steps. A third relevant parameter is the number of 
clusters, k. Unluckily, the identification of the best number of 
clusters based on the underlying dataset can be computation­
ally demanding and unfeasible for a large number of Smart 
Meters. Sensitivity analysis can be used to optimize some 
clustering quality indicator but such approach does not scale 
up to larger number of itemsets. In the current experimental 
section, we used k — 10. A last parameter is the threshold 
for the clustering silhoutte to determine the anomalies. We 
set this parameter to —0.20, but such value does not need to 
be evaluated apriori, and can be set by looking at the visual 
representation of the clustering silhouette. 

Running the approach on the dataset with 381 devices 
brings to a total of 364,107 overall events generated on the 
devices based on the 76 event types. We map these events into 
20,670 transactions associated to the 381 segments (Stepl). 
Running the Apriori algorithm brings overall 273,829 non-
unique itemsets (StepZ). We can note how this is a large 
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number of itemsets, due to the fact that at this stage the same 
itemset might appear in different transactions. The next step 
goes into filtering the itemsets based on the condition that they 
are present in > 2 segments considering the unique itemsets at 
this stage, not anymore their association to a transaction. This 
brings 44,450 unique itemsets that can be considered normal 
behaviour according to the discussion above (Step3). 

The list of itemsets at this stage is too large to give 
useful insights to a decision maker. We can at this stage add 
more contextual information (Step4). Since we are considering 
unique events in Step3, by mapping back the events to the ones 
in the segment we increase the number of events, as an event 
might happen under a different context. This differentiates 
further two events and is conforming to the idea of augmenting 
the data points with contextual information. In the current 
analysis we skipped this step, but it is applicable with the 
assumption that the added contextual information is categorical 
or can be converted in such form. 

We run then the clustering algorithm on the mapped events 
to create clusters of itemsets that are similar in terms of 
the identified categorical features (Step5). We use categorical 
clustering based on entropy minimization [22]. To represent 
the clusters, we use the Clusplot representation, in which 
clusters are represented as ellipses after multi-dimensionality 
reduction by showing the two principal components [24]. 

After clustering has been completed, we have a set of 
clusters that represent the way in which all the itemsets are 
mapped to each cluster. To simplify the representation, we 
show the categorical clustering with k — 10 clusters performed 
on 681 itemsets for 17 devices as a subset of the whole 
dataset (Fig. 2). The size of the clusters shows the spread 
of the itemsets within the cluster and the shadowed area 
shows the density within clusters. Clustered data represent 
the normal behaviour according to our initial assumptions. 
However, as noted in the previous section, we can still see 
areas worth investigation, like cluster nr. 2 that is more spread 
apart compared to the others. 

We run then the final step (Step6). We now take back the 
itemsets that were not frequent in the original dataset {NMFV). 
We cluster each one of the new itemsets to see how well they 
fit into the existing clusters (based on MFV). 

If we look at the fitting of different itemsets for the case 
of 17 devices, we can represent each itemset according to the 
silhouette width (Fig. 3). We can see that some itemsets on 
the upper part of the plot (,s?; near 1.0) are fitting better in the 
clusters. On the bottom part, those that have negative ,s,;. As 
new itemsets are clustered according to Step6 of the approach, 
we look for those that have negative ,s?;. 

Based on the analysed data, if we set a threshold of 
—0.20, we can identify the top-10 anomalies after running the 
overall approach (Table I). We report events that were detected 
as anomalies together with their Si silhouette value and a 
reference index i. In particular, there are five itemsets that 
might signal some forms of missing voltages associated with 
overcurrents (itemset indexed 1,3,4,8,9). These are itemsets 
that can be worth further investigation by decision makers. 

Fig. 3. Lower part of the Clustering Silhouette, 17 devices (n=681, k=10) 

V I . E V A L U A T I O N & DISCUSSION 

There are several lessons learned from the application of 
the approach to anomaly detection in Smart Meters data. 

We approached initially the problem from different angles 
but we found out that the most important aspect when con­
sidering anomalies is to provide a collective and contextual 
overview. At least in the experimental project we described, 
single point anomaly detection did not prove to be sufficient 
to determine anomalous events. The addition of contextual 
information and the inclusion of an event type instance in 
relation to other event types instances proved to be a more 
powerful mechanism. 

TABLE I 
TOP -10 A N O M A L I E S ACCORDING TO SI, DEVICES=17, N=681, K=10 

Si i itemset 

-0.322 1 {"Missing voltage L 2 " , "Overcurrent L I " , "Overcurrent 
L2" , "Overcuirent L3"} 

-0.255 2 {"Limiter activated", "Power-up"} 

-0.249 3 {"Limiter activated", "Overcurrent L I " , "Power-down" 
"Power-up", "Rate switching error clear Rate switching 
error cleared in meter"} 

-0.239 4 {"Missing voltage L2" , "Overcurrent L2"} 

-0.236 5 {"Limiter activated", "Overcurrent L I " , "Power-down", 
"Rate switching error"} 

-0.222 6 {"Limiter activated", "Overcurrent L I " , "Power-down", 
"Rate switching error clear Rate switching error cleared 
in meter"} 

-0.216 7 {"Rate 1 switching", "Rate 2 switching"} 

-0.212 8 {"Missing voltage L 2 " , "Overcurrent L2" , "Overcurrent 
L3"} 

-0.219 9 {"Overcurrent L I " , "Power-down", "Power-up", "TOU 
activated meter"} 

-0.208 10 {"No overcurrent L2 ...", "Overcurrent L I " , "Overcurrent 
L3"} 

A n additional aspect in the Smart Grids domain is that— 
differently from other domains—we are not aware of existing 
datasets that can be used for the evaluation of the goodness of 
anomaly detection from Smart Meters data in comparison with 
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an established ground truth. As such, the opinion of domain 
experts becomes very relevant: it is however unrealistic to 
provide indicators such as false negatives and false positives 
due the vast amount of itemsets to review. This makes the 
evaluation of the approaches difficult to perform. 

Running the project also allowed to identify several draw­
backs of the approach. These constitute an interesting list 
of requirements for the improvement of the implemented 
solution. One of the drawbacks of the proposed approach 
is that we considered itemsets and not sequences. That is, 
we did not discriminate the order of events within itemsets 
both in frequent itemset mining and in clustering. One of 
the aspects we are keen to explore is the usage of sequences 
for the segmentation part with a different algorithm to cluster 
sequences. Together with experts opinions we might derive a 
comparison of several approaches. 

Another consideration is about using the approach for online 
learning—streaming data and real-time system behaviour. This 
poses different issues than those considered in this paper, but 
working towards the implementation of such a system can be 
useful to support the concept of "smarter grids". 

Finally, in this paper we did not explore in detail the usage 
of contextual information in the experimental part. Given 
how the features have been built this is not a problem as 
long as numerical features are converted to categorical data. 
We were considering also an initial phase in which domain 
experts could rule-out non-interesting or non-relevant event 
types. However, this initial phase can also be detrimental to 
the possibility to detect unexpected events. 

V I I . C O N C L U S I O N 

Modem Smart Grids wil l permeate our lives in years to 
come. While in their initial appearances data communication 
was mostly one-way, we are now in the context of two-ways 
Smart Grids that can not only monitor but also fine-tune be­
haviour based on knowledge mining capabilities. In this sense, 
there is a growing need to introduce smarter behaviours in the 
infrastructure, and a central role is played by Smart Meters as 
devices that can engage in two-way communications. 

In this paper, we evaluated an approach for anomaly detec­
tion in Smart Grids derived from data streamed from Smart 
Meters. We proposed to approach the problem by taking into 
account the aspects of collective and contextual anomalies that 
can bring benefits in building a wider set of dependencies 
among events derived from Smart Meters. 

We presented the application of a proposed unsupervised 
contextual and collective detection approach to data streams 
from a large energy distributor in the Czech Republic to reason 
about different types of possible anomalies (e.g. over-voltages, 
under-voltages). We discussed the benefits of the approach 
but also identified drawbacks that can lead to improvements 
towards the implementation of an online learning system. 

In running the project we found several key needed charac­
teristics: the necessity to provide a constantly online-learning 
system, scalable, and that can support detection of unexpected 
events, possibly leading towards a self-healing system. 
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