
1

A Survey on Network Security Monitoring

Implementations

Ibrahim Ghafir, Jakub Svoboda, Vaclav Prenosil

Abstract— Network monitoring is a difficult and demanding

task that is a vital part of a network administrator’s job.

Network administrators are constantly striving to maintain

smooth operation of their networks. If a network were to be

down even for a small period of time, productivity within a

company would decline, and in the case of public service

departments the ability to provide essential services would be

compromised. There are different network security approaches.

This paper provides the readers with an overview of concrete

software implementations of the current network monitoring

approaches. In addition, it presents a comparison between those
implementations.

Keywords—Network security monitoring, packet capture,

deep packet inspection, flow observation.

I. Introduction
Monitoring helps network and systems administrators to

identify possible issues before they affect business continuity
and to find the root cause of problems when something goes
wrong in the network. Whether it is a small business with less
than 50 nodes or a large enterprise with more than 1000 nodes,
continuous monitoring helps to develop and maintain a high
performing network with little downtime.

For network monitoring to be a valuable addition to a
network, the monitoring design should adopt basic principles.
The monitoring system should be comprehensive and cover
every aspect of an enterprise, such as the network and
connectivity, systems as well as security. It would also be
preferable if the system provides a single-pane-of-glass view
into everything about the network and includes reporting,
problem detection, resolution, and network maintenance.
Further, every monitoring system should provide reports that
can cater to a different level of audiences, the network and
systems admin, as well as to management. Most importantly, a
monitoring system should not be too complex to understand
and use, nor should it lack basic reporting and drill down
functionalities.

Network monitoring is a difficult and demanding task that
is a vital part of a network administrator’s job. Network
administrators are constantly striving to maintain smooth

Ibrahim Ghafir

1
, Jakub Svoboda

2
, Vaclav Prenosil

1

1
 Faculty of Informatics, Masaryk University

2
 Institute of Computer Science, Masaryk University

Brno, Czech Republic

ibrahim_ghafir@hotmail.com, svob.jak@gmail.com, prenosil@fi.muni.cz

operation of their networks. If a network were to be down
even for a small period of time, productivity within a company
would decline, and in the case of public service departments
the ability to provide essential services would be
compromised. In order to be proactive rather than reactive,
administrators need to monitor traffic movement and
performance throughout the network and verify that security
breaches do not occur within the network.

There are different network security approaches [1]. This
paper provides the readers with an overview of concrete
software implementations of the current network monitoring
approaches. In addition, it presents a comparison between
those implementations.

The remainder of this paper is organized as follows.
Section 2 classifies the current network security monitoring
implementations into three main classes. A comparison
between presented implementations is provided in Section 3
and Section 4 concludes the paper.

II. Network Security Monitoring
Implementations

This section classifies the current network security
monitoring implementations into packet capture
representatives, deep packet inspection representatives and
flow-based observation representatives. It also provides
information about the usefulness of particular tools for
development of new network traffic analysis methods.

A. Packet Capture Representatives
1) Tcpdump

Tcpdump is a command line tool for packet capture
analysis. Tcpdump can analyze both live traffic using the
libpcap library and captured packet traces in PCAP format.
Packets may be filtered both before and after the capture.
Filtering before the capture can be done using BPF (Berkeley
Packet Filter). Filtering after capture can be achieved using
tcpdump’s filters, described later in this section.

Data are printed out in text format. The output displays
individual packets with information that include source and
destination addresses, L4 protocol used, and L4 protocol flags.
Figure 1 shows output listing two packets.

Packets to be displayed can be filtered using expressions.
Filters can be imposed on source and destination addresses,
ports, L3 and L4 protocols, and L4 protocol flags. Addresses

mailto:ibrahim_ghafir@hotmail.com
mailto:svob.jak@gmail.com

2

can be expressed in format of individual addresses or in CIDR
notation. Multiple rules in the expression can be composed
using boolean operators. The example on Figure 1 uses three
filters. src host 10.0.2.15 selects only packets originating in
the IP address 10.0.2.15. dst port 22 selects only packets
destined for the port 22. Finally, tcp[13] = 2 selects packets in
which the decimal value of the 14

th
 byte is 2. The filters are

composed using the and word, which means only packets that
meet all the criteria pass through the filter.

Figure. 1. Example of a tcpdump filter and tcpdump’s output.

Tcpdump needs root privileges to open the network
interface. Operation without full root is possible using SUID
or Linux capabilities. Granting the tcpdump executable
cap_net_raw and cap_net_admin capabilities allows tcpdump
to be run as a regular user.

2) Wireshark

Wireshark is a graphical tool for packet capture analysis.
While Wireshark and tcpdump are implementations of the
same architectural approach, their underlying ideas differ.
Tcpdump is as close to the raw data as possible, while
Wireshark strives to provide higher-level representation of the
same data.

Wireshark can analyze both live traffic using the libpcap
library and captured packet traces in PCAP format. Captured
packets can be filtered both during and after the capture.
Filtering after capture can be achieved using filter expressions.
Filtering during capture can be done using BPF.

Data are displayed as text arranged in a scrollable colored
list and expandable boxes. Wireshark’s main window has two
frames. The upper frame displays list of captured packets with
their basic attributes displayed. A line may be colored, based
on the protocol the individual packet belongs to. When the
user selects packet in the upper frame, this particular packet is
displayed in the lower frame. The lower frame’s
representation includes several boxes that can be expanded
and collapsed. The boxes contain various attributes of the
packet as well as representations of the packet’s data in ISO
OSI layers’ data the packet is part of. Also, related data from
other packets may be displayed there, HTTP TCP stream for
instance.

Packets displayed in the upper frame can be filtered using
expressions entered in the text box on the top of the window.
The expression vocabulary is richer that the one of tcpdump.
Figure 2 shows the architecture of Wireshark.

Wireshark uses a separate program to capture the traffic,
dumpcap. The reason is to allow separation of privileges [2].
Wireshark can be run as a regular user and only dumpcap has
to be given special permissions. Dumpcap needs root
privileges to open the network interface. Operation without the
user having root access is possible using either SUID or Linux
capabilities. Granting the dumpcap executable cap_net_raw
and cap_net_admin capabilities allows dumpcap to be run as a
regular user without SUID.

Figure. 2. Wireshark architecture showing privilege separation.

B. Deep Packet Inspection
Representatives
1) Snort

Snort is an intrusion detection system performing deep
packet inspection using pattern matching. The pattern
matching is implemented in the form of rules [3]. Rules are
structured text files describing network traffic data of interest.
Typically, rules are used to generate alerts when a security-
related incident occurs, such as malware activity, attack, or
breach of security policies. A rule contains information
specifying when the rule should be triggered. An important
part of these information is one or more patterns that are
searched in the network traffic. The pattern can be a sequence
of characters or bytes or a regular expression. Figure 3 shows
Snort rule structure.

Figure. 3. Snort rule structure

Snort rules have a specific structure. The beginning of the
rule before the parentheses describes which network flows the
rule refers to. This is called the rule header. The rule header
specifies the action the rule should perform (alert for
instance), L3 protocol and source/destination IP addresses and
ports on which to match. Variables may be used in place of IP
addresses. The rest of the rule inside the parentheses is called
the rule options. Rule options specify content on which the
rule matches and other properties of the rule, its name,
classification type, etc. The most important part of the rule is
the content keyword that specifies a pattern to be found in the
packet’s payload. The content keyword’s function can be
further changed using modifiers. For instance, modifiers
offset, distance, depth, and within control in which areas of the
packet the rules are matched [4].

3

Snort has three special keywords, byte_test, byte_jump,
and byte_extract, that allow to adjust the pattern matching
based on data in an individual packet [5]. The first two
keywords behave as patterns that match when their conditions

are true. byte_test performs arithmetic (<, ≤, =, >, ≥) and
bitwise (AND, OR) comparisons on sequences of bytes.
byte_jump puts a space before the next pattern with size
inferred from payload’s byte value. If the jump is possible,
byte_jump also behaves as a match. This behavior can be used
to match packets with a specific length based on specific data
in the payload. byte_extract converts specified bytes into a
numerical variable that can be used later in the rule. These
keywords do not allow more complicated decoding or
processing.

The Snort’s architecture allows the implementation of so-
called preprocessors [6]. Preprocessors read the packet before
rule evaluation, serially in the order specified by Snort’s
configuration. This allows implementation of additional rule
keywords. Moreover, preprocessors allow implementation of
functionality more complicated than just pattern matching,
such as data decoding and anomaly detection. For instance, the
Normalizer preprocessor converts equivalent values to a
unified format with the goal of making IDS evasion harder.
Snort’s architecture including the preprocessors is depicted in
Figure 4.

Figure. 4. Snort architecture.

There are several preprocessors for anomaly detection
available. Frag3 and stream5 preprocessors are integrated in
the official Snort distribution and detect protocol anomalies.
SPADE [7], PHAD [8], and snortad [9] are 3rd party
preprocessors detecting traffic anomalies. Snort preprocessors
are usually implemented in C. They allow implementation of
similar concepts to those that can be implemented in the event-
based architecture

Snort needs root privileges to open the network interface.
It is possible to configure Snort to drop its privileges to a non-
root user once it opens the network interface.

Snort is a single-threaded application. Multithreaded Snort
setups work in the following way: The monitored traffic is
divided by flows into multiple parts; each part of the traffic is
fed to a single Snort instance [10].

2) Suricata

Suricata is an intrusion detection system performing deep
packet inspection using pattern matching. Figure 5 shows
Suricata rule structure, the rule header and rule options are as
same as the Snort rule structure.

Figure. 5. Suricata rule structure.

Suricata uses similar rules to Snort and is compatible with
Snort rules. The rule structure is the same for both Snort and
Suricata. The difference between the two is in the keywords
and protocols that can be specified. Suricata allows
specification of several L7 protocols on top of the L3
protocols supported by Snort, http, ftp, tls, smb and dns [11].
Some keywords behave differently than in Snort, for instance,
the fast_pattern:only keyword doesn’t make a difference in
processing, unlike in Snort. Some keywords are supported
only by Suricata, such as the iprep keyword for matching IP
reputation data and the dns_query keyword for analyzing only
the DNS response body.

Suricata’s architecture is similar to Snort’s one with a
difference. What corresponds to the preprocessor part in the
Snort’s architecture is divided in two in Suricata, decoding and
detection. We found out about this by studying the source
code [12]. Decoding modules add information to the internal
representation of packets in Suricata. Detection modules rely
on this internal representation and provide keywords for use in
rules. Overview of the Suricata’s architecture is shown in
Figure 6.

Figure. 6. Suricata’s architecture.

Each packet is first processed in decoding functions and
then in detection modules. Decoding functions read the packet
and save the decoded data into an internal representation of the
packet. The decoding functions are called one at a time on the
packet. Extending the decoding functionality is possible by
implementing a new decoding function and placing it into the
decoding pipeline. The decoding pipeline starts with the
source of captured packets, then L2 is decoded, and then
protocols on higher layers are decoded.

4

Upon decoding, the packets pass detection. The detection
is governed by rules and depends on the decoding step. The
rules are matched with the internal packet representation. The
matching process is broken into several detection modules in
all of which the matching takes place. Unlike decoding,
detection is parallelized and one packet can be processed in
multiple detection modules at the same time. Extending the
detection functionality is possible by implementing a new
detection module and registering it in the table of detection
methods.

Suricata is written in C and the modules for Suricata have
to be written in C. There are no plans supporting C++. C
requires greater programming expertise than the Bro language.
Therefore, this property makes Suricata not the best
prototyping tool available.

Suricata is multithreaded out of the box. Even though it is
not as fast as Snort on a single-CPU computer, Suricata is
designed to scale on computers with tens of CPUs [13]. The
multithreading approach is different from Snort. Multithreaded
Snort setups divide the monitored traffic by flows into
multiple parts, each processed by an individual Snort instance.
Suricata, on the other hand, does not require the traffic
balancing since it manages multithreading itself. This
approach makes it more user-friendly.

3) Bro

Bro [14] is a network security monitor performing deep
packet inspection using event-based analysis. In contrast to
Snort and Suricata, Bro is primarily not rule-driven. Instead, it
implements a Turing-complete scripting environment [15].
Rule-based detection as well as arbitrary detection algorithms
can be implemented in this environment. Bro detection rules
are described by scripts. Figure 7 shows Bro architecture.

Figure. 7. Bro architecture.

The Bro’s scripting environment uses the Bro
programming language. It is an interpreted, typed language.
What makes it special are domain-specific types. For example,
the addr type holds an IP address [16]. Variables of structured
types are reference type variables. This makes processing of
large sets or tables efficient, since only the references are
copied, not the data itself. There are two types of collections,
sets and tables. Loops are available in the form of iteration
through collections. The Bro programming language lacks
other forms of loop control, presumably serving as a deterrent
against overly complex algorithms. This is a reasonable
requirement for network traffic monitoring when the

processing is done in real time. And that exactly is the most
significant goal of Bro, to allow real-time network traffic
analysis and save already processed results to log files.

The default installation of Bro contains many scripts
implementing various sorts of traffic analysis. Some of the
items the default Bro setup monitors are: Bidirectional flows,
DHCP leases, DNS queries and responses, MD5 and SHA1
hashes of files transmitted over unencrypted protocols, HTTP
requests and user agents, port scans, email headers from
SMTP traffic, successful and unsuccessful SSH connections,
SSL certificates, SYSLOG messages, traffic tunnels.

Since the preinstalled scripts usually expose an API in the
form of events, they can be used by user scripts, extending the
default functionality.

The core of Bro, implemented in C, processes network
traffic, performs DPI and generates events about what is
happening in the traffic. Events generated by the core are
listed in the bif files [17]. Many events are generated,
spanning L2 through L7. Examples are a new ARP packet,
closed TCP connection, HTTP request, etc. In other words,
this type of DPI performs semantic matching of network
events instead of simple pattern matching, as opposed to Snort
and Suricata. Majority of the events provide context, typically
in the form of information about the relevant connection. The
events are then processed by the Bro scripts.

Bro scripts use so-called event handlers to listen to the
events. The usual reactions to events vary. On the one hand,
the simplest possible processing saves the event information to
a log file. On the other hand, some scripts implement fairly
complex processing and generate additional types of events.
This further extends DPI abilities of Bro. Scripts can handle
events generated both by the core and by other scripts. Figure
8 shows a very short module that just writes "Hello world!" to
the standard output when Bro starts.

Figure. 8. A simple Hello world! script.

The scripting engine hosts the scripts and dispatches events
generated both by the scripts and the core to the scripts
listening to these events. It also allows operations like file
access and execution of applications native to the operating
system. This functionality can be used by advanced scripts.
File access may be used to fetch information from external
sources, e.g., a blacklist. Execution facility may be used for
many purposes. One example is reporting issues to a ticket
managing software via email. The sendmail executable can be
used by such a script. Another example is automatic triggering
of a remotely triggered black hole by executing a program that
does the blackholing.

Bro scripts are organized in so-called modules. A module
can be implemented wholly in one file or can be broken into
several files. Two identifiers with the same name in two

5

different modules do not collide with each other. Cross-
module references can be made using the name
name_of_module::name_of_identifier.

A module can define types, variables, functions, and event
handlers. These entities can be either local to the module or
globally accessible from other modules.

It is possible to define custom types using enum, set, table,
vector, and record. Enum in Bro is similar to enum in other
languages. Set is similar to HashSet<T> in C# in its
functionality [18], albeit the syntax is different. Table is
similar to Dictionary<TKey,TValue> in C# [29] with the
difference that C# allows only one key while Bro allows
multiple keys. Vector is a table indexed by count. Count is the
name for int in Bro. Record is similar to C# class [20] that
contains only fields [21]. Both Bro record and C# class are
reference types, meaning assignment of its instance copies
only the reference (pointer), not the whole instance. This can
be compared to C# struct which is a value type, meaning
assignment of its instance copies the whole instance.

Bro can be run both as a single-threaded application and as
a multithreaded distributed application. The single-threaded
mode is called standalone while the multithreaded one is
called cluster. If Bro is used as a platform for development of
proof-of-concept methods, the standalone mode is usually
more appropriate than the cluster mode. Development for the
cluster mode is more difficult than for the standalone mode
because additional functionality has to be used by scripts [22].

C. Flow-based Observation
Representatives
Flow-based observation architecture contains two main

components; a flow exporter and a flow collector. This section
covers representative implementations of both flow exporters
and flow collectors.

1) Flow Exporters

nProbe [23] is a commercial open-source flow exporter.
Data can be exported in NetFlow v5, NetFlow v9, and IPFIX
formats. nProbe has an application visibility (nDPI) ability,
which is used for detection of application-specific protocols.
This information is saved in a custom column in NetFlow v9
or IPFIX format. It is difficult to obtain nProbe source code
for free.

YAF [24] is an open-source flow exporter. Data are
exported in the IPFIX format. A passive OS fingerprinting
functionality based on the p0f software can be compiled into
YAF. YAF supports modules that implement DPI. However,
YAF does not provide DPI in default setup.

QoF [25] is a fork of YAF. It removes all payload
inspection abilities and instead focuses on passive
performance measurements.

ipt-netflow [26] is a plugin for iptables for flow export.
Data can be exported in NetFlow v5, NetFlow v9, and IPFIX
formats. There is no special functionality besides standard
network flows. There is also no apparent focus towards high-
throughput networks. ipt-netflow is open-source.

pmacct [27] is an open-source flow exporter and flow
collector. Data can be exported in NetFlow v5, NetFlow v9,
sFlow v5, and IPFIX formats. Supports high-throughput
networks using PF_RING. No DPI-related functionality is
available in pmacct.

softflowd [28] is an open-source flow exporter performing
export to NetFlow v1, v5, and v9 formats. There is no
apparent effort to provide anything on top of regular NetFlow
data export.

2) Flow Collectors

nProbe is not only a flow exporter, it is also a flow
collector. Available storage backends are MySQL, SQLite,
text files, and binary files. The nProbe flow collector was
created because its author deemed other collectors available at
the time to be too cumbersome to use.

IPFIXcol [29] is an IPFIX collector designed for high-
throughput networks. IPFIXcol claims to be flexible. Storage
backend can be customized using output plugins. IPFIXcol
also allows implementation of so-called IPFIX mediators, used
for processing of the collected data before it hits the collector.

flowd [30] is a NetFlow v1, v5, v7, and v9 collector. It is
created under the UNIX philosophy to do just one thing. The
collected data are saved in a binary format. flowd is provided
with Perl and Python interfaces for reading the binary data.
flowd strives for security using privilege separation of
components. flowd is open-source and freely available.

nfdump [31] consists of several tools. The nfcapd tool
listens to NetFlow v5, v7, v9 streams and saves them to nfcap
files. The nfdump tool can be used for analysis of nfcap files.
nfdump uses similar filter syntax to tcpdump. nfdump is open-
source and freely available.

pmacct [32] as a collector has several storage backends
available. It can use MySQL, PostgreSQL, SQLite,
MongoDB, BerkeleyDB, and flat files. Among other formats,
it can collect NetFlow v1-v9 and IPFIX.

SiLK [33] is a collector for NetFlow v5, v9, and IPFIX
data. It is designed for high-throughput networks. SiLK
consists of multiple tools and plugins for filtering, analysis,
and processing of flow data.

III. Comparison
With respect to the selection of network traffic monitor

suitable for DPI, the following criteria have been evaluated for
each mentioned traffic monitor:

 Prototyping: Is the network traffic monitor suitable
for creation of method prototypes?

 Developer-friendliness: Does the network traffic
monitor allow development of new traffic analysis
methods in an easy to use way?

 Extensibility: Is it possible to extend the existing
functionality of the network traffic monitor in a
reasonable way? What programming language does
the API use?

6

The descriptions of individual network traffic monitors in
this paper indicate answers to these criteria. Table I shows the
summary.

TABLE I. BRO IS THE SUITABLE TOOL FOR CREATION OF

PROTOTYPES

Monitor Prototyping
Developer

friendliness
Extensibility

Tcpdump No No No API

Wireshark No No No API

Snort No No C language

Suricata No No C language

Bro Yes Yes Bro language

IV. Conclusion
There are several different approaches to network

monitoring. Each approach is the best fit for a different
purpose. Wireshark is good for manual analysis,
predominantly of small capture files. Tcpdump is packet-
oriented and works well in those use cases where filtering
individual packets by L3/L4 attributes like IP address, TCP
flags, payload bytes, etc. is sufficient. It does not work well
for stream reassembly or L7 protocol analysis. Snort and
Suricata work well when the goal is to match patterns in
network data. Bro allows development of advanced detection
methods.

Bro is the best software/environment for development of
novel detection or processing techniques. It can be used for
continuous monitoring of high-throughput networks. The
scripting environment is extensible in a memory-safe language
specialized in network data processing. It is not constrained by
belonging to a single paradigm for network monitoring like
the other tools. Unfamiliarity is a disadvantage, compared to
more known tools like wireshark, tshark, snort and suricata.

References
[1] J. Svoboda, I. Ghafir, V. Prenosil. Network Monitoring Approaches: An

Overview. In Proceedings of International Conference on Advances in
Computing, Communication and Information Technology. Birmingham,

UK, 2015. ISBN: 978-1-63248-061-3.

[2] Keuter, J.: Privilege Separation [online]. [cit. 2015-06-18]. URL,
http://wiki.wireshark.org/Development/PrivilegeSeparation.

[3] Snort Syntax and Simple RuleWriting [online]. [cit. 2015-06-18]. URL,

http://www.anotherchancecomputers.com/uncategorized/snort-syntax-
and-simple-rule-writing/.

[4] Esler, J.: Offset, Depth, Distance, and Within [online]. URL,

http://blog.joelesler.net/2010/03/offset-depthdistance-and-within.html.

[5] Writing Good Rules [online]. [cit. 2015-06-18]. URL,
http://manual.snort.org/node36.html#testing_numerical_values.

[6] Esler, J.: Preprocessors [online]. [cit. 2015-06-18]. URL,
http://manual.snort.org/node59.html.

[7] Biles, S.: Detecting the Unknown with Snort and the Statistical Packet

Anomaly Detection Engine (SPADE) [online]. [cit. 2015-06-18]. URL,
http://webpages.cs.luc.edu/~pld/courses/447/sum08/class6/biles.spade.p

df.

[8] Mahoney, M.: Network Anomaly Intrusion Detection Research at
Florida Tech. [online]. URL, http://cs.fit.edu/~mmahoney/dist/.

[9] AnomalyDetection: Home - Snort.AD [online]. [cit. 2015-06-18]. URL,

http://www.anomalydetection.info/?home,1.

[10] Verplanke, E.: Understand packet-processing performance when

employing multicore processors [online]. [cit. 2015-06-18]. URL,
http://www.embedded.com/design/connectivity/4007065/Understand-

packet-processing-performance-whenemploying-multicore-processors.

[11] Suricata Rules [online]. [cit. 2015-06-18]. URL,
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricat

a_Rules.

[12] suricata/src at master [online]. [cit. 2015-06-18]. URL,
https://github.com/inliniac/suricata/tree/master/src.

[13] Julien, V.: On Suricata performance [online]. [cit. 2015-06-18]. URL,

http://blog.inliniac.net/2010/07/22/on-suricataperformance/.

[14] Paxson, V.: Bro: A System for Detecting Network Intruders in Real-
time. Comput. Netw., 1999: s. 2435 – 2463, ISSN 1389-1286,

doi:10.1016/S1389-1286(99)00112-7.

[15] The Bro Network Security Monitor [online]. [cit. 2015-06-18]. URL,
http://www.bro.org/documentation/overview.html.

[16] Types and attributes — Bro 2.2 documentation [online]. [cit. 2015-06-
18]. URL, http://bro.org/sphinx/scripts/builtins.html.

[17] All Bro Scripts [online]. [cit. 2015-06-18]. URL,

http://bro.icir.org/sphinx/scripts/scripts.html.

[18] Microsoft: HashSet<T> Class [online]. [cit. 2015-06-18]. URL,
http://msdn.microsoft.com/en-us/library/bb359438.aspx.

[19] Microsoft: Dictionary<TKey, TValue> Class [online]. [cit. 2015-06-18].

URL, http://msdn.microsoft.com/en-
us/library/xfhwa508\%28v=vs.110\%29.aspx.

[20] Microsoft: Classes and Structs (C# Programming Guide) [online]. [cit.

2015-06-18]. URL, http://msdn.microsoft.com/en-
us/library/ms173109.aspx.

[21] Microsoft: Fields (C# Programming Guide) [online]. [cit. 2015-06-18].

URL, http://msdn.microsoft.com/en-us/library/ms173118.aspx.

[22] base/frameworks/cluster/main.bro [online]. [cit. 2015-06-18]. URL,

https://www.bro.org/sphinx/scripts/base/frameworks/cluster/main.html.

[23] Deri, L.: nProbe: an Open Source NetFlow probe for Gigabit Networks.
In In Proc. of Terena TNC 2003, 2003. URL,

http://luca.ntop.org/nProbe.pdf.

[24] Christopher Inacio, B. T.: YAF: Yet Another Flowmeter [online]. [cit.
2015-06-18]. URL,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.3172&rep
=rep1&type=pdf.

[25] Trammell, B.: YAF-derived flow meter for passive performance

measurement [online]. [cit. 2015-06-18]. URL,
https://github.com/britram/qof.

[26] NetFlow iptables module [online]. [cit. 2015-06-18]. URL,

http://sourceforge.net/projects/ipt-netflow/.

[27] Lucente, P.: pmacct: steps forward interface counters [online]. [cit.
2015-06-18]. URL, http://www.pmacct.net/pmacct-stepsforward.pdf.

[28] softflowd - A software NetFlow probe [online]. [cit. 2015-06-18]. URL,
https://code.google.com/p/softflowd/.

[29] Velan, P.; Krejci, R.: Flow Information Storage Assessment Using

IPFIXcol. In Dependable Networks and Services, editace R. Sadre; J.
Novotny; P. Celeda; M.Waldburger; B. Stiller, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
30632-7, s. 155–158, doi:10.1007/978-3-642-30633-4_21.

[30] flowd - small, fast and secure NetFlow collector [online]. [cit. 2015-06-

18]. URL, http://code.google.com/p/flowd/.

[31] NFDUMP [online]. [cit. 2015-06-18]. URL,
http://nfdump.sourceforge.net/.

[32] Lucente, P.: pmacct project: IP accounting iconoclasm [online]. [cit.

2015-06-18]. URL, http://www.pmacct.net/.

[33] Gates, C.; Collins, M.; Duggan, M.; aj.: More Netflow Tools for
Performance and Security. In Proceedings of the 18th USENIX

Conference on System Administration, LISA’ 04, Berkeley, CA, USA:
USENIX Association, 2004, s. 121–132.

