D 2016

PRISM-PSY: Precise GPU-Accelerated Parameter Synthesis for Stochastic Systems

ČEŠKA, Milan, Petr PILAŘ, Nikola PAOLETTI, Luboš BRIM, Marta KWIATKOWSKA et. al.

Basic information

Original name

PRISM-PSY: Precise GPU-Accelerated Parameter Synthesis for Stochastic Systems

Name in Czech

PRISM-PSY: Precise GPU-Accelerated Parameter Synthesis for Stochastic Systems

Authors

ČEŠKA, Milan (203 Czech Republic), Petr PILAŘ (203 Czech Republic, belonging to the institution), Nikola PAOLETTI (826 United Kingdom of Great Britain and Northern Ireland), Luboš BRIM (203 Czech Republic, guarantor, belonging to the institution) and Marta KWIATKOWSKA (826 United Kingdom of Great Britain and Northern Ireland)

Edition

LNCS 9636. Berlin, 22nd International Conference, TACAS 2016, p. 367-384, 18 pp. 2016

Publisher

Springer International Publishing

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/16:00088144

Organization unit

Faculty of Informatics

ISBN

978-3-662-49673-2

ISSN

UT WoS

000406428000021

Keywords in English

GPU; stochastic systems; model checking; parameter synthesis

Tags

International impact, Reviewed
Změněno: 16/4/2019 09:41, prof. RNDr. Luboš Brim, CSc.

Abstract

V originále

In this paper we present PRISM-PSY, a novel tool that performs precise GPU-accelerated parameter synthesis for continuous-time Markov chains and time-bounded temporal logic specifications. We redesign, in terms of matrix-vector operations, the recently formulated algorithms for precise parameter synthesis in order to enable effective data-parallel processing, which results in significant acceleration on many-core architectures. High hardware utilisation, essential for performance and scalability, is achieved by state space and parameter space parallelisation: the former leverages a compact sparse-matrix representation, and the latter is based on an iterative decomposition of the parameter space. Our experiments on several biological and engineering case studies demonstrate an overall speedup of up to 31-fold on a single GPU compared to the sequential implementation.

Links

GA15-11089S, research and development project
Name: Získávání parametrů biologických modelů pomocí techniky ověřování modelů
Investor: Czech Science Foundation