J 2017

Quaternionic contact hypersurfaces in hyper-Kähler manifolds

IVANOV, Stefan, Ivan MINCHEV and Dimiter VASSILEV

Basic information

Original name

Quaternionic contact hypersurfaces in hyper-Kähler manifolds

Authors

IVANOV, Stefan (100 Bulgaria), Ivan MINCHEV (100 Bulgaria, guarantor, belonging to the institution) and Dimiter VASSILEV (100 Bulgaria)

Edition

Annali di Matematica Pura ed Applicata, HEIDELBERG, SPRINGER HEIDELBERG, 2017, 0373-3114

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.066

RIV identification code

RIV/00216224:14310/17:00095899

Organization unit

Faculty of Science

UT WoS

000393687100012

Keywords in English

Quaternionic contact; Hypersurfaces; Hyper-Kahler; Quaternionic projective space; 3-Sasaki

Tags

Změněno: 11/4/2018 10:48, Ing. Nicole Zrilić

Abstract

V originále

We describe explicitly all quaternionic contact hypersurfaces (qc-hypersurfaces) in the flat quaternion space Hn+1 and the quaternion projective space. We show that up to a quaternionic affine transformation a qc-hypersurface in Hn+1 is contained in one of the three qc-hyperquadrics in Hn+1. Moreover, we show that an embedded qc-hypersurface in a hyper-Kähler manifold is qc-conformal to a qc-Einstein space and the Riemannian curvature tensor of the ambient hyper-Kähler metric is degenerate along the hypersurface.

Links

3SGA5953, interní kód MU
Name: Kvaternionově kontaktní Yamabeho problém (Acronym: The Quaternionic Contact Yamabe Problem)
Investor: South-Moravian Region, The Quaternionic Contact Yamabe Problem, Incoming grants