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ABSTRACT

Current advances in hardware and algorithm develop-
ment allow the life science researchers to replace the
experiment with a computer simulation. A key ob-
ject of these computations is a molecule - a group of
atoms interconnected via a cloud of electrons. For its
computational processing, electrons around the atom
are often represented by one number: partial atomic
charge. It can be calculated by quantum mechan-
ics (QM), which offers high accuracy at the cost of
long computation time, or markedly faster by empirical
methods such as Electronegativity Equalization Method
(EEM). Empirical methods calibrate their parameters
to the particular QM charge calculation approach by
multi-dimensional optimization procedure. This work
systematically summarizes and compares the accuracy
and computational performance of available EEM pa-
rameterization approaches with local, global or com-
bined optimization (least squares, evolutionary and ge-
netic algorithms). Moreover, we propose a new method-
ology called guided minimization. We found that local
optimization plays a crucial role in the parametrization,
and only methodologies combining a global and a lo-
cal optimization provide high-quality EEM parameters.
Furthermore, we observed that global iterations of evo-
lutionary of genetic algorithm often do not contribute
to the result. Therefore, we reduced the global search
method to guided minimization that achieves same or
better accuracy than state-of-the-art methods and sur-
passes them with simplicity and speed.

INTRODUCTION

Advances in computer science together with availability
of high performance computational resources enable the
researchers to effectively replace an experiment with a
computer simulation. Especially life sciences have inten-
sified their computational approaches: chemoinformat-
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ics, bioinformatics and computational chemistry have
emerged and are taking more and more attention. A
core object of research in these disciplines is a molecule,
simplified as a group of atoms interconnected via a cloud
of electrons. The location of atoms and distribution of
electrons are therefore essential information for mod-
elling and simulating the key life science processes such
as chemical reactions, interactions between molecules,
solvation, biodegradation and so on.

The electrons do not occupy a stable spot in a space - we
can obtain only a probability of their occurrence at some
point (Jensen 2007). We can represent the cloud of elec-
trons as electron densities in dedicated parts of the space
(so called molecular orbitals). However, this approach
causes many inconveniences due to its complexity. In-
stead, we can represent electron distribution around the
atom as one real number, partial atomic charge. This
concept found its use in many applications in chemoin-
formatics (Tervo et al. 2005), bioinformatics (Varekova
et al. 2013) and computational chemistry (Park et al.
2006).

The charges can be calculated via quantum mechanical
(QM) methods, but these demand high computational
resources, so cheaper and faster methods based on em-
pirical parameters were developed. Empirical methods
open a possibility to use charges in common modelling
and simulation tasks thanks to their speed and low cost.
The challenging part is the calculation of empirical pa-~
rameters, values that are calibrated to provide close fit
to QM charges from the training set through an opti-
mization in multi-dimensional space.

Several Electronegativity Equalization Method (EEM)
parametrization approaches were developed, while they
are based on least squares parametrization method
(Mortier et al. 1986), global optimizations (Ouyang
et al. 2009) or a combination of global and local op-
timizations (Menegon et al. 2002; Bultinck et al. 2004;
Chaves et al. 2006; Racek et al. 2016). Each of these
methodologies brings its strong and weak points. Least
squares parametrization methods can not handle hetero-
geneous datasets (Racek et al. 2016), genetic algorithms
have high computational demands and require execution
with proper settings. A goal of our work is to discover



real methodological demands of EEM parameterization,
e.g.: Can we use only local optimization or just global
optimization? Or it is necessary to combine them? How
much does the global optimization contribute to the re-
sult? Can sole differential evolution (Ouyang et al. 2009)
successfully parametrize heterogeneous datasets?

For this purpose, we describe, analyze and compare
various methodologically different EEM parameteriza-
tion approaches. They include published EEM param-
eterization methods (e.g. least squares optimization
(Mortier et al. 1986), differential evolution (Ouyang
et al. 2009), genetic algorithm combined with local op-
timization method (Menegon et al. 2002; Bultinck et al.
2004; Chaves et al. 2006)), well-known optimization
methods never used in EEM (sole genetic algorithms,
NEWUOA (Powell 2004a)) and also our innovative ap-
proach GDMIN (guided minimization). GDMIN devel-
opment was based on our rich experience with EEM
parameterization and it connects the top class local
minimization approach NEWUOA with effective global
search.

RELATED WORK

As a purely theoretical concept, partial atomic charges
cannot be experimentally measured. Moreover, as there
are many ways how to reduce electron distribution into
one value, there are many methods how to compute
atomic charges. The most accurate methodology for
their calculation is an application of QM, which works
with QM theory level, basis set and charge calculation
scheme (Gupta 2005). These three components can be
variously combined, e.g. B3LYP/6-311G/NPA denotes
the method based on B3LYP theory (Becke 1993) us-
ing 6-311G basis set and Natural Population Analysis
(Reed et al. 1985). Different combinations produce dif-
ferent charge values and are suitable for different appli-
cations. For example, charges computed by B3LYP/6-
311G /NPA were used in a simulation of heme-containing
complexes (Rong et al. 2007) or in prediction of pK,
values (Vafekova et al. 2013). The validity of computed
charges can be verified indirectly, as they determine e.g.
dissociation constant for acid in the solution that can
be compared to experimental measurements.

Quantum mechanics methods provide precise results,
but have high computational demands, e.g. 20 CPU
days for protein ubiquitin charge calculation (Ionescu
et al. 2013). To overcome this, many empirical meth-
ods have been developed to approximate QM using con-
cepts based on common physico-chemical laws and in-
cluding some simplifications. The empirical methods
often work with parameters: empirical constants calcu-
lated to mimic QM charges from the training set. With
known parameters, charges can be computed quickly for
atoms in any molecule with the same atom types (usu-
ally based on atom elements and their bonds, e.g. atom
type C2 represents a carbon with two bonds).
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Electronegativity equalization method (Mortier et al.
1986), the most popular and reliable empirical approach,
stands on the electronegativity equalization principle.
(Sanderson 1951) states that when the molecule is
formed, the electron distribution spreads around atoms
and their electronegativities (the ability to keep elec-
trons near) get equalized, see Equation (1).

X=X1=X2='"""=Xn

(1)

Equalized electronegativity of the given atom depends
on its charge, charges of surrounding atoms and their
distance and also on the empirical parameters, see
Equation (2a). Equations (1) and (2a) together with
the charge conservation principle in Equation (2b) give
us the system of linear equations (LS). During the
parametrization phase, we know ¢; (QM charges from
the training set), and we compute A, B, k. During the
charge calculation phase, we use precomputed A, B, &
to find ¢; for atoms in an arbitrary molecule.

4
i = Ay + Big; 2
X -+ Biq +/@Z R (2a)
J#i
N
Q= Z%‘ (2b)

where 4,7 denote the given atom, ¢ charge, R the interatomic
distance, k parameter shared by all atom types, A;, B; parameters
shared by all atoms of the same atom type, N number of atoms,
Q@ the total charge of the molecule.

The parametrization represents an optimization prob-
lem in many dimensions: 2x number of atom types (A
and B) +1 (k). We look for the parameters that produce
charges as close to QM charges as possible. Common
fitness functions include (squared) Pearson correlation
coefficient, root-mean square deviation (RMSD) or Eu-
clidean distance.

Least squares parametrization method (LR) optimizes
only through one dimension: k. Parameters A and
B are directly computed via least squares minimiza-
tion. The method is extremely fast, but it fails in
case of training sets that are heterogeneous in terms
of molecules’ types variability. Optimization methods
searching through all dimensions deal with them bet-
ter. Ouyang et al. applied differential evolution (DE)
(Ouyang et al. 2009). In their experiments, they used
141 small organic molecules of thirteen atom types (from
five elements) to find EEM parameters. They achieved
R? above 0.98 when validating on polypeptides. No lo-
cal optimization method for polishing the results is men-
tioned. (Menegon et al. 2002; Chaves et al. 2006) ap-
plied genetic algorithm and minimized the result with
simplex local optimization method (Nelder and Mead
1965). Bultinck et al. applied simplex also at each
member of a new population at every step (Bultinck
et al. 2004). The population of 10-30 items undergone a
genetic algorithm for 500 iterations. They all achieved



high correlation on small homogeneous datasets (< 200
molecules) of five atom elements.

OPTIMIZATION METHODS

We compared several global optimization methods for
EEM parametrization:

e least squares method (LR)

e local optimization method applied on one random
vector (NEWUOA)

e differential evolution (DE)

e differential evolution combined with local mini-
mization (DEMIN)

e genetic algorithm (GA)

e genetic algorithm combined with local minimiza-
tion (GAMIN)

e guided minimization (GDMIN)

The methods LR (Mortier et al. 1986), NEWUOA (Pow-
ell 2004a), DE (Ouyang et al. 2009), GAMIN (Menegon
et al. 2002; Bultinck et al. 2004; Chaves et al. 2006),
DEMIN (Racek et al. 2016) were taken from literature.
The approach GDMIN was newly developed by us and
to our best knowledge, it has not been applied to EEM
parametrization before.
LR iteratively calculates A, B for fixed &, slightly in-
creasing x each time within empirical interval.
NEWUOA locally optimizes unconstrained problems
and does not need derivatives, which makes computing
more efficient even for systems with hundreds of vari-
ables (Powell 2004a).
All other compared algorithms, DE(MIN), GA(MIN)
and GDMIN can be described with the following terms.
The population consists of vectors, each vector consists
of k and A;, B; for all atom types. The evaluation of the
vector means computing the EEM charges with param-
eters included in the vector and comparing them to QM
charges with the fitness function, e.g. avg(RMSD,,), the
average of RMSD through atom types.
The pseudoalgorithm 1 of global methods based on pop-
ulation describes the basic flow.
All methods create a random population, *MIN meth-
ods locally minimize part of it. The best vector is stored.
Differential evolution then iteratively creates a new trial
vector by adding the difference between parents’ values
to the original vector, as Equation (3) shows (Storn and
Price 1997). Trial might be also minimized locally in
DEMIN. If trial outperforms the so-far-best vector, we
save it.

(3)

where F' € {0,1}", a,b are randomly selected from population,

trial < original + F x (a —b)

original is (randomly or according to fitness) selected from pop-

ulation.
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Genetic algorithm iteratively creates a new population
by crossover of parents (better half of population) and
mutation. Parents are minimized in GAMIN. If the best
vector in population outperforms the so-far-best vector,
we save it.

In the end, *MIN methods locally minimize the best
vector and then return it as the result.

Guided minimization basically skips the iterative cre-
ation of new trial vectors/generations, and performs
only population generation, minimization of its part and
minimization of the best vector.

Algorithm 1 Algorithm for EEM Parametrization with
DE(MIN), GA(MIN) or GDMIN

. function FIND_PARAMETERS(method)
population < generate_random_population()
V x € population: R(x) - EVALUATE(x)
if method is *MIN then
YV x € (subset C population): x
NEWUOA(X)
best « find_the_best(population)
switch method do
case de: DE(population)

(_

o

case ga: GA(population)

best +~ NEWUOA (best)
return best

1: function EVALUATE(x)

2 V molecule € training set: eem_charges <
eem(x)
3: R(x) < compare(eem_charges, qm_charges)

1: function DE(population)
2: loop
trial < combine(select_random(population),
select_random(population))
R(trial) - EVALUATE(trial)
if method is *MIN then
trial <~ NEWUOA(trial)
if R(trial) < R(best) then
best <« trial

function GaA(population)
loop

parents C population

parents <— NEWUOA (parents)

population Lo
ate_new_population(parents)

V x € population: R(x) - EVALUATE(x)
7 this_generation_best
find_the_best(population)

if R(this_generation_best) < R(best) then
9: best < this_generation_best

gener-

—

%




IMPLEMENTATION

We implemented DE(MIN), GA(MIN) and GDMIN as
a part of NEEMP (Racek et al. 2016), a tool for cal-
culation, parametrization and validation of EEM pa-
rameters. Local minimization in *MIN methods is done
by Powell’s NEWUOA algorithm (Powell 2004a), imple-
mented in FORTRAN (Powell 2004b). Random gener-
ation of population is done by Latin Hypercube Sam-
pling, implemented by (Burkardt 2004). For solution of
linear equation system, LAPACK implementations are
applied and parallelized by OpenMP.

EVALUATION METHODS

To compare methods, we analysed their accuracy, valid-
ity of produced parameters and computational perfor-
mance.

To evaluate the accuracy of methods, we ran
parametrizations on three datasets complementing each
other in variability of molecule and atom types. Dataset
setl consists of 1956 small organic molecules com-
pounded from 6-176 atoms of eight atom types of five
atom elements. Dataset set2 consists of 4475 small or-
ganic molecules compounded from 5-124 atoms of sev-
enteen atom types of ten atom elements. Dataset set3
consists of 4443 small organic and inorganic molecules,
organometals and peptides compounded from 5-305
atoms of fifteen atom types of nine atom elements. For
further details about datasets, see (Racek et al. 2016).
We compared calculated charges to QM charges from
the training set by applying average of root mean square
deviations per atom type (avg(RMSD,)) as a fitness
function for all runs. For each method, we ran all combi-
nations of settings described in Table 1 for all datasets.
For each configuration, we ran four experiments with
different random seeds. We call a specific combination
of settings a configuration.

Table 1: Method’s Settings Applied in Experiments
(Fo]lowing shortcuts are used: population, iterations, minimized
part of population, iterations applied at the beginning, iterations

applied in the end.)

LR interval and step < 0,1 > by 0.05
DE pop size 50 100 250 500 1000
iters 500 1000 2500 5000 10000
DEMIN  pop size 50 100 250 500 1000
iters 100 5000
GA pop size 50 100 250 500 1000
iters 500 1000 2500
GAMIN  pop size 510 20 50
iters 5 50 100 500
GDMIN  pop size 50 100 250 500 1000
min pop size 1 10 20 50 100
iters beg 100 250 500 1000
iters end 500 1000 2000 3000
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To validate the parameters on a non-training dataset,
we computed EEM charges for validation datasets and
compared them with QM charges. We had two valida-
tion datasets: we call the first one test set (Geidl et al.
2015) consisting of 657 small organic molecules of seven
atom types of four atom elements. We used it for setl
and set2 validation. The second validation dataset is
the whole ligandezpo database, details in (Racek et al.
2016). It is a highly diverse set of 17769 small organic
and inorganic molecules, organometals and peptides of
fifteen atom types of eleven atom elements. Training
set3 presents a random quarter of ligandexpo.

To show the computational performance of different op-
timization methods, we also analysed computation time
and evaluated the number of linear system’s solutions
depending on the method’s settings.

RESULTS AND DISCUSSION

To evaluate the accuracy and efficiency of optimiza-
tion methods, we investigated minimal configurations
necessary for the method to satisfy following require-
ments: total R? > 0.9, total RMSD < 0.1, per atom
type R, > 0 for all atom types and per atom type
RMSD, < 0.2 for all atom types. We denote such
parameters of high-quality. If at least three out of
four runs of same configuration with different random
seeds satisfied these requirements, we call such config-
uration reliable. For methods that did not reach the
high-quality requirements, we inspected if they satisfy
benevolent requirements: R? > 0.85, R, > 0, RMSD
< 0.15, RMSD,, < 0.25.

Local Optimization Without Global

First, to show the role of global optimization in EEM
parametrization, we ran just local optimization, i.e.
minimize one random vector with NEWUOA. We found
no high-quality parameters, regardless of number of lo-
cal iterations. Results were basically random, R? = 0.
Clearly, sufficiently high number of experiments might
succeed in finding high-quality parameters. However,
some sort of global search would make this more reli-
able and independent of random seed. Therefore, global
method should be present in the parametrization.

Global Optimization Without Local

Second, to show the role of local optimization method
in EEM parametrization, we ran just global methods,
without any local minimization. We found no high-
quality parameters. GA did not get over random results,
but LR and DE managed.

Least Squares Method
LR, apart from other methods we compare in this work,
produces only one set of parameters for one training



dataset due to its non-stochastic nature. Found pa-
rameters were not of high-quality, but many satisfied
benevolent requirements, see Table 2. With increasing
heterogeneity in atom and molecule types (in set2 and
set3), the results deteriorated.

Table 2: Quality of Parameters Calculated by Least
Squares Parametrization Method (Overline denotes
average, subscript a per atom statistics.)

-2

R? R, RMSD RMSD,
setl  0.931 0.806 £ 0.085 0.092  0.110 +£ 0.080
set2  0.921 0.628 £ 0.256  0.102  0.152 £ 0.123
set3 0.864 0.502 £ 0.303  0.145  0.280 =+ 0.563

Genetic Algorithm

We found no high-quality parameters. Moreover, the
results were often random, R? ~ 0, although sometimes
R? ~ 0.5 occurred. As the randomly generated vectors
in initial population only rarely get over R? > 0.2, the
population does not have quality necessary for genetics
to gradually improve.

Differential Evolution

We found no high-quality parameters, but the differen-
tial evolution performed better than genetic algorithm.
For setl, some runs even reached benevolent require-
ments. However, DE performed worse than LR.

Global Optimization Combined With Local

As results above suggest, neither local nor global opti-
mization are able to produce high-quality EEM parame-
ters. Chaves et al. combined GA with local simplex op-
timization (Chaves et al. 2006), we developed DEMIN
recently (Racek et al. 2016). We present GDMIN as a
novel contribution here for the first time. In all methods,
we apply NEWUOA as the local minimization method.

Genetic Algorithm With NEWUOA

We found high-quality parameters with genetic algo-
rithm combined with NEWUOA, but no reliable con-
figuration. We experimented with local minimization
applied at parents in each iteration and at the best vec-
tor after genetic algorithm finished.

When applying NEWUOA at both places (GAMIN2),
we achieved high-quality parameters in one or two runs
with population of size 10 (setl, set2) or 20 (set3). In
all cases, the success was independent on the numbers
of iterations, i.e. the same results were obtained by 50
and 500 iterations (for setl and set2, even five iterations
sufficed).

When applying NEWUOA only at the genetic result
vector (GAMIN1), the results were random most of the
time (R? ~ 0). Only rarely one out of four runs man-
aged to satisfy the requirements for setl.
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Differential Evolution With NEWUOA

We found high-quality parameters with differential evo-
lution combined with NEWUOA and many reliable con-
figurations. We experimented with local minimization
placed at three points: at the part of initial population
(on vectors with R? > 0.2 and R > 0), at trials (if
R? > 0.6 and R > 0) and at the vector resulting from
the evolution process.

When applying NEWUOA at all three places
(DEMIN3), almost all runs reliably produced high-
quality parameters for setl and set3. For set2, the
best results were found with population of 250, more
vectors caused increased dependency on random seed.
In general, no trials were better than the best vector
of minimized initial population, thus making evolution
iterations superfluous.

When applying NEWUOA on trials and the evolution
result vector (DEMIN2), all configurations reliably re-
sulted in high-quality parameters for setl (regardless of
population size), set2 (population 50 and 100) and set3
(for population 250 and more). For larger populations
in set2, atom type S2 (sulphur with two bonds) exceeded
RMSD little above the limit 0.2. In those cases, 5000
evolution iterations managed to overcome this. Trial
vectors gradually improved, reaching R? ~ 0.5 at the
end of evolution process. Local minimization at the re-
sulting vectors managed the rest.

When applying NEWUOA only on the evolution result
vector (DEMIN1), the situation mirrored the previous
case, thus again making the evolution iterations expend-
able.

Guided Minimization With NEWUOQOA

We found high-quality parameters at almost all config-
urations with our novel method. At least three out of
four runs were of high-quality at following settings for
set1/set2/set3: population 100/100/250 or more, select-
ing a single one best vector (or more), minimizing it
(them) for 100 coarse local iterations (or more), select-
ing the best one, and minimizing for 3000/3000/2000
iterations. Some high-quality parameters were found
also with smaller populations or lower number of itera-
tions, but only in one or two runs out of four, thus more
dependant on a “lucky” random seed.

We observed some overtraining, when more iterations
applied at the minimal selection or at the best vector
at the end resulted in worse parameters. For example,
set3 runs with 1000 population, selecting the best one,
running 100 coarse and 3000 fine local iterations found
high-quality parameters in all four runs. With 4000 iter-
ations at the end, three of them fell bellow the require-
ments. Fitness function not considering R? causes fall
into low RMSD sacrificing the correlation.

Table 3 shows the quality measurements of the best pa-
rameters produced by smallest reliable configuration.



Table 3: Quality of Parameters Calculated by Guided Minimization with the Smallest Reliable Configuration
Satisfying R? > 0.9 and RMSD < 0.1 and Va : R, > 0 and RMSD, < 0.2

configuration random seed — R? ﬁi RMSD RMSD,

set1l 100 pop, 1 selected, 202 0.970 0.789 + 0.140  0.058 0.074 + 0.026
100 coarse, 500 fine local iters

set2 100 pop, 1 selected, 200 0.959 0.674 + 0.257  0.070 0.078 + 0.033
100 coarse, 3000 fine local iters

set3 250 pop, 1 selected, 202 0.970 0.741 £+ 0.227 0.0653  0.0632 + 0.035
100 coarse, 2000 fine local iters

To Sum Up

Sole local (NEWUOA) and sole global (LR, DE, GA)
optimization does not suffice for EEM parametrization.
Their combinations (DEMIN, GAMIN, GDMIN) man-
age multi-dimensional optimization well even for het-
erogeneous datasets and often reliably, not depending
on lucky random seed. In our experiments, evolution
or genetic iterations were repeatedly redundant, high-
quality results occurred regardless of their number. Our
method, simple guided minimization (GDMIN), which
was developed to reflect this, has succeeded to pro-
duce high-quality parameters reliably with population
of same size than DEMIN. Moreover, GDMIN excelled
also in accuracy, for all datasets the best results from all
our experiments were obtained by guided minimization.
However, DEMIN did not fall behind much, the differ-
ences were tiny. GAMIN produced the worst parameters
out of these three methods although still satisfying the
requirements.

Validation

We validated the best parameters acquired by our ex-
periments on validation datasets test set (setl, set2)
and ligandexpo (set3). All of them were produced by
GDMIN.

Parameters trained on setl by GDMIN (500-vector pop-
ulation, 1 selected, 250 coarse and 500 fine iterations,
random seed 203) applied to compute charges for test
set and compared with test set’s QM charges achieved
R? 0.9718 and RMSD 0.0597. Top figure 1 shows the
correlation per atom.

Parameters trained on set2 by GDMIN (100-vector pop-
ulation, 5 selected, 500 coarse and 3000 fine iterations,
random seed 202) used for test set’s charge computa-
tion also showed excellent agreement: R? 0.9713, RMSD
0.0607. Bottom figure 1 shows the correlation per atom.
Parameters trained on set3 by GDMIN (250-vector pop-
ulation, 5 selected, 250 coarse and 3000 iterations, ran-
dom seed 203) used for EEM charge computation of
whole ligandexpo dataset show high quality in Figure
2. They achieved R? 0.9724 and RMSD 0.0622.
Therefore, the validation successfully showed a robust-
ness of EEM parameters calculated via GDMIN.
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Figure 1: Correlation of Test Set’s QM Charges and
EEM Charges Trained on Setl and Set2

Computation Time Comparison

We analysed the computation time of different optimiza-
tion methods in a theoretical and practical way.

The bottleneck of EEM parametrization is to find the
solution of the system of linear equations (LS). There-
fore, we took one solution for one molecule as a measure
unit and computed how many are needed, see Table 4.
Actual numbers would be multiplied by the number of
molecules in the training set, we omit these as they do
not influence the order. If we evaluate the expressions
with settings from reliable configurations (or average, if
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Figure 2: Correlation of Ligandexpo’s QM Charges
and EEM Charges Trained on Set3

they do not have reliable ones), we get following order
of computational complexity: LR < DE ~ NEWUOA
< DEMINI1 ~ GDMIN < DEMIN2 < DEMIN3 < GA
< GAMIN1 < GAMIN2.

The order of method’s complexity stems from the order
of settings. Generally, population size is smaller than
the number of iterations, P < G, the number of global
iterations tends to be smaller than the number of lo-
cal iterations, but not necessarily. The number of local
iterations applied at the result vector, during global iter-
ations and on the initial population gradually decreases,
Ly > Ly > L3. Also, in GDMIN the number of vectors
selected from initial population to be minimized is much
lower then the population size, M < P.

The walltime of computations in our experiments cor-
responded with this order. It ranged from seconds (LR,
DE) through minutes and tens of minutes (NEWUOA,
DEMIN, GDMIN) to hours and days (GA, GAMIN).
We ran all experiments in parallel with OpenMP on four
cores of Intel E5-2670 2.6 GHz. They all required just
a few tens of MB of RAM.

From the methods that successfully found high-quality
parameters (i.e. DEMIN, GAMIN, GDMIN), GDMIN
and DEMIN are comparable, GAMIN is much more
computationally demanding, as Figure 3 shows.

CONCLUSION

In this work, we compared several optimization meth-
ods in parametrization of empirical atomic charges. We
found that nor local neither global optimization alone
can produce high-quality parameters, but their com-
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Table 4: How Many Solutions of Linear System (LS)
Are Needed in Each Method? (P is the size of population,
G number of global method iterations, L number of local
method iterations, M number of vectors selected from
population to be minimized. k € (0, 1) is percentage of
population to be minimized (depending of the way of selection).)

method number of LS solutions
LR interval size / step
NEWUOA L

DE P+ G

GA P+ PG

DEMIN1 P+G+1L

DEMIN2 P+ GLy+ L4
DEMIN3 P(1+4kL3)+ GLo + Ly
GAMIN1 P+ PG+ L

GAMIN2 P+ G(P+ (P/2)Ly + Ly)
GDMIN P4+ MLy + 14

Figure 3: Computation Time for All *MIN Methods

(The dots denote the run of minimal successful configuration,
the bars minimal reliable successful configuration.)
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bination effectively does so. We observed that evolu-
tion or genetic iterations in combined methods often do
not contribute to the result, but some sort of global
search must be present. To reflect this, we simplified
global search method and developed guided minimiza-
tion method (GDMIN), which has not been applied to
EEM parametrization before. It achieves accuracy bet-
ter or comparable to the best methods available and sur-
passes them in simplicity, computational performance
and ease of implementation. For future work, we aim to
parametrize with datasets containing the protein frag-
ments. These, because of the number of atom types and
heterogeneity, still resist state-of-the-art EEM methods.
More available and more accurate charges can after-
wards contribute to modelling and simulations of protein
docking, folding and interaction with drugs.
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