Accelerated RMSD Calculation for Molecular Metadynamics

Ji¥i Filipovi¢, Jana Pazarikova, Ales Kienek

Institute of Computer Science, Masaryk University
email: fila,pazurikova,ljocha@ics.muni.

KEYWORDS
Molecular metadynamics, RMSD, GPU acceleration

ABSTRACT

In this paper, we introduce GPU acceleration of RMSD
approximation, which is computationaly demanding
task in molecular metadynamics. Comparing to tuned
CPU implementation, we have reached 4.4x speedup us-
ing mid-end GPU. The scaling of our GPU implementa-
tion is sufficient to be usable in real-world application.

MOLECULAR METADYNAMICS

Standard molecular dynamics (MD) is a simulation
method, established for decades, which computes be-
haviour of one or more molecules in time. The re-
sult of the simulation, a trajectory (atom positions in
time) of the molecule, can be used for a plethora of pur-
poses (modelling biological processes, predicting molec-
ular properties, evaluating effectivity of a drug, ...).
MD is an N-body simulation, its core is integration of
the Newton’s equation of motion (dz/dt* = F/m) of
all atoms of the molecule in femtosecond steps. It is
driven by force field, a function which assigns potential
energy to a given vector x of all 3N atomic coordinates
(N is number of atoms in the system). In order to fit
to the integration step, not only the force field (energy)
but also its partial derivatives by all components of x
(all atomic coordinates) are usually computed.
Standard molecular dynamics shows expected properties
of a thermodynamic system—it tends to oscillate in low
energy areas, overcoming higher potential and reaching
other low energy areas only occasionally. Therefore, if
the purpose of the MD simulation is sampling the whole
potential energy surface, the simulation must run rather
long to explore all minimas.

Metadynamics (Laio and Parrinello (2002)) addresses
the problem by “filling the free energy wells with compu-
tational sand”; it biases the potential energy with terms
that penalize already visited areas, driving the simula-
tion over energy barriers faster.

A common approach to define such terms is express-
ing them as collective variables which characterize be-
haviour of the molecule somehow in low-dimensional
space. Trivial collective variables can be, for example,
torsion angles of freely rotatable bonds.

cz

278

Vojtéch Spiwok

University of Chemistry and Technology
email: Vojtech.Spiwok@vscht.cz

A promising approach works with landmark structures,
a set of fixed shapes of the molecule (vectors a;) which
sample the energy surface coarsely. Then, the bias po-
tential is expressed in terms of root mean square dis-
tance (RMSD) between the current structure (shape of
molecule) and the landmarks:

Z?:l Pie-)\Rl\rISD(x@,v)
= 2?21 e—ARMSD(x,a;)

P(x) (1)

where P, are appropriate constants derived from low-
dimensional embedding of the structures a; (Branduardi
et al. (2007)). In this calculation, the critical part is
evaluation of RMSD(x, a;), which, for all a;, involves
finding the best fitting rotation-+shift between the pair
of structures. Moreover, partial derivatives w.r.t. all
components of x are required as well (as mentioned be-
fore). Profiling reference implementation shows that vir-
tually all the computing time of metadynamics exten-
sions is spent in RMSD calculation.

We focus our work in two directions: reduce the total
number of RMSD calculations, and accelerate the re-
maining ones, the latter being the main topic of this

paper.
RMSD APPROXIMATION

First, considering that MD is a contiguous process, we
can assume that in each step the change of the current
structure x is tiny w.r.t. the previous one. Therefore
we can assign the close structure y = x in a particu-
lar simulation step, compute all RMSD(y, a;) including
the best-fitting rotation Ra,,y, and we retain it fixed for
a certain number of subsequent steps. Then, in each
step, we compute the best fitting Ry« only (one compu-
tation instead of n), and we approximate

RMSD(a,, x) (2)

= A_THRaiyRyxX — ay|

Besides reducing the number of fitting operations, par-
tial derivatives w.r.t. x have to be computed for Ryx
and within Eq. 2 only. Consequently, also the code for
RMSD calculation is simplified considerably, making it
a better candidate for accelerated implementation.

ACCELERATED RMSD CALCULATION

The purpose of this work is to show the potential of
accelerated RMSD calculation coupled with the close
structure approximation described in the previous sec-
tion. Therefore we deliberately set up a bit artificial but
well-controlled experiment, leaving the full integration
with the complex MD software for our future work.
The code of approximated RMSD calculation was ex-
tracted from the prototype (implemented on top of
Plumed-+Gromacs), and wrapped with driver routines
which simulate its typical invocation, i.e. appropriate
number of calls with fixed y, looping over a; etc.

Performance Boundaries

First, we analyse performance boundaries of the RMSD
calculation. The input for the computation are set of n
landmark structures a, n rotations Rs,y, displace vec-
tor d (weights of particular atoms) and actual simulation
state x. Output of the computation is vector of deriva-
tives § and RMSD distances r. The size of a is 3nN,
size of x and § is 3N, size of d is N, size of r is n and
size of Ra,y is 9n.

In a metadynamics step, RMSD(a;,x) is computed for
i €< 1,n > resulting in complexity O(nN). We need
to perform 34nN arithmetic operations and transfer
12nN +28N + 3n bytes to/from memory, so the flop-to-
word ratio is about 2.83. This signs the memory-bound
problem, so we expect the computation can be roughly
as fast as reading atoms of all landmark structures.
Considering GPU as accelerator, there is a good chance
to improve the RMSD calculation performance, as GPU
memory bandwidth exceeds CPU memory bandwidth
significantly. However, most of middle and high-end
GPUs are connected via PCI-E bus, thus copying data
between CPU and GPU memory may become a new
bottleneck. In a metadynamics step, we need to trans-
fer vector = of size 3N into GPU memory and copy d
of size 3N back. Considering complexity O(nN), the
computation time should dominate when n grows.

Modification of CPU Implementation

In our original implementation within Plumed, the com-
putation for one landmark structure (Eq. 2) has been
separated in a method. Our first modification was sep-
aration of whole RMSD computation, showed in Alg. 1.
The RMSD is computed using single-precision num-
bers (as it is already approximated by the close struc-
ture, high precision arithmetics is not needed), whereas
Plumed use double precision, so we retype =, r and § in
each metadynamics iteration.

We have vectorized CPU implementation using autovec-
torization in Intel C++ compiler and parallelized it us-
ing OpenMP. We have performed those fairly well known
optimization steps Jeffersi and Reinders (2015): storing

279

Algorithm 1 CPU RMSD
1: for i=0; 1 < n; i++ do

Tlocal 0

for j =0;j < N; j++ do
compute djocar USing a;,j, x; and d;
Tlocal ¢~ Tlocal + i](slocal]2
(5]‘ “— 5]‘ -+ 5local

Ty <

W N

~ O Ot

Tlocal

all atom coordinates as structure of arrays instead of
array of structures and informing compiler about mem-
ory alignment by pragmas (both improves vectorization
efficiency); setting the loop over atoms (line 3) to be vec-
torized (compiler has not done it automatically); paral-
lelization of loop over landmarks (line 1); creating local
copies of array ¢ (one for each thread), so number of
atomic modifications is minimized; setting thread affin-
ity to scatter mode and use only one thread per physi-
cal core (improves speed of memory-bound codes). The
loop tiling improves cache locality, however, this opti-
mization has been performed by the compiler.

GPU Implementation

To implement GPU version of RMSD computation, we
have used CUDA framework NVIDIA (2015). In CUDA,
the code runs in high number of lightweight threads
grouped into thread blocks. Thread within the block
can synchronize and use fast shared memory. To utilize
whole GPU, multiple thread blocks need to be executed.
To compute derivatives, we can parallelize the loop run-
ning over atoms (line 3 of Alg. 1), such that i-th CUDA
thread contains loop running over all landmark struc-
tures and computing ¢;. This parallelization pattern
yields efficient coalesced memory access (neighbouring
threads access neighbouring atoms). Furthermore, each
thread can cache its value of x;, d; and d; in registers.
However, computing 7 is not efficient in such implemen-
tation. The array § is reduced sequentially without syn-
chronization, however, we need to reduce 7., individ-
ually for each landmark structure (see line 7 of Alg. 1).
Thus, reduction of r has to be performed in each itera-
tion running over landmark structures in parallel, which
is less efficient comparing to serial reduction. Alterna-
tively, second kernel with parallel loop over landmark
may be executed to compute r, however, the array «a is
read twice. Both parallel reduction and double access
to a result in about half performance.

To improve performance, we have modified paralleliza-
tion pattern used in our previous work Filipovi¢ et al.
(2015) (for matrix-vector operations) which allows us to
compute r efficiently: the distances needed to compute
r are computed and stored in shared memory buffer buf
and the reduction is performed serially on buf. In this
implementation, thread block contains b, x b, threads
and process ¢ atoms of ¢ landmark structures (forming a

Algorithm 2 GPU Tiled Algorithm

1: g < global thread index

2: Iz, ly < local thread indices

3: for i=0;1 < n;i +=t do

4 for ii = 0; il < t; ii+-+ do

5 L1+

6: compute djocqr USINg ag, 1, T4, and dg,
7: bufiit, + bufiii, +010call”
8
9

6gm — 59J; + Olocal
barrier sync.
if [, == 0 then
Tlocal < 0
for j = 0;j < t; j++ do
Tlocal ¢ Tlocal + bufl;,; N
atomically 711, < Tit1, + Tiocal

10:
11:
12:
13:

14:

Table 1: Performance in ideal conditions.
CPU orig CPU opt. GPU

3.36 GFlops | 61.24 GFlops | 270.0 GFlops
3.36 GFlops | 61.45 GFlops | 298.6 GFlops

complete
§ only

t x t tile in 2D array a). For implementation simplicity,
we set b, =t and b, | t. The pseudocode is in Alg. 2.
There are two nested loops performed by each thread.
The outer loop (line 3) iterates over all landmarks with
step of size t. The first inner loop (line 4) iterates within
tile, computes § and store distances in buf. After the
first inner loop finishes, the block-local reduction of data
within buf is performed: b, threads iterates over buffer
columns, summing the local distances serially (lines 10-
13). The global reduction is performed at line 14 in
reasonable number of atomic operations. Square roots
of components of 7 are performed in CPU code in O(n).
Note that this implementation requires padding of land-
mark structures to number divisible by ¢ (in our imple-
mentation, we set t = 32). However, it is not in principle
problem to constraint number of landmark structures
in metadynamics. Also the number of atoms have to
be divisible by x-dimension of thread block, which can
be easily satisfied by adding dummy atoms with zero
displacement which add zero to r.

EVALUATION

In this section, we compare our GPU implementation
including all data conversions and transfers with origi-
nal and tuned CPU implementation. All measurements
have been performed on computer equipped by Intel
Core i7-3820 (4 cores at 3.6 GHz and GeForce GTX 480).
First, we measure the performance in ideal conditions,
i.e. for sufficiently large input. We have used molecules
of 8192 atoms and 4096 landmark structures. Results
are depicted in Table 1. The speedup of GPU imple-
mentation is 4.4x over tuned and 80.4x over original
CPU implementation. When only derivations are com-
puted and thus simple parallelism pattern is employed,

280

landmarks
speedup

200 400 600 800 1000 1200 1400 1600 1800 2000
atoms

Figure 1: GPU speedup scaling.

the performance is similar to our buffered algorithm.
Second, we measure how the performance scales accord-
ing to number of atoms and number of landmark struc-
tures. Fig. 1 shows speedup of GPU over tuned CPU
implementation. As we can see, the GPU implementa-
tion is preferable for realistic simulation configurations
(using hundreds of landmark structures and thousands
of atoms).

CONCLUSION AND FUTURE WORK

The GPU implementation significantly outperforms
both original and tuned CPU implementation. It is
also usable for realistic problem sizes. In our future
work, we plan to integrate our implementations into
Plumed+Gromacs. Moreover, we plan to add code
which automatically select target for computation (GPU
or CPU) according to input data and hardware configu-
ration, or even splits workload between GPU and CPU.

ACKNOWLEDGEMENT

This work was supported by the Grant Agency of the Czech
Republic, project no. 15-17269S.

REFERENCES

Branduardi D.; Gervasio F.L.; and Parrinello M., 2007. From
A to B in free energy space. Journal of Chemical Physics,
126, no. 5, 054103.

Filipovi¢ J.; Madzin M.; Fousek J.; and Matyska L., 2015.
Optimizing CUDA code by kernel fusion: application on
BLAS. The Journal of Supercomputing, 71, no. 10. doi:
10.1007/s11227-015-1483-z.

Jeffersi J. and Reinders J., 2015. High Performance Paral-
lelism Pearls Volume Two: Multicore and Many-core Pro-
gramming Approaches. Morgan Kaufmann.

Laio A. and Parrinello M., 2002. Escaping Free-Energy Min-
ima. Proceedings of the National Academy of Sciences of
the United States of America, 99, no. 20, 12562——12566.

NVIDIA, 2015. CUDA C Programming Guide, version 7.5.

