Exchanging Security Events:
Which And How Many Alerts Can We Aggregate?

Martin Husdk*t, Milan (Vjermék*T, Martin LaStovi¢ka*T, and Jan Vykopal*
*Institute of Computer Science, TFaculty of Informatics
Masaryk University, Brno, Czech Republic
{husakm,cermak,lastovicka,vykopal } @ics.muni.cz

Abstract—The exchange of security alerts is a current trend
in network security and incident response. Alerts from network
intrusion detection systems are shared among organizations so
that it is possible to see the ”’big picture” of current security
situation. However, the quality and redundancy of the input data
seem to be underrated. We present four use cases of aggregation
of the alerts from network intrusion detection systems. Alerts
from a sharing platform deployed in the Czech national research
and education network were examined in a case study. Volumes
of raw and aggregated data are presented and a rule of thumb
is proposed: up to 85 % of alerts can be aggregated. Finally,
we discuss the practical implications of alert aggregation for the
network intrusion detection system, such as (in)completeness of
the alerts and optimal time windows for aggregation.

I. INTRODUCTION

Collaboration and data exchange is an emerging trend in
network security and security incident response [1]. Network
monitoring and intrusion detection systems more and more
include an alert sharing component. Sharing security alerts
among organizations allows them to see the “big picture”
of the current situation on the global network and changes
the approach taken to network security. Large-scale security
incidents can be detected more easily and effectively mitigated.
Also the analysis of alerts from distributed sensors provides
valuable results. However, there are certain issues specific for
this area that need to be addressed.

The first task of processing the shared security alerts is
to cleanse and aggregate the data. Not only we have to
eliminate alerts that are incorrectly formatted or that are
missing important pieces of information. The alerts may
be duplicated, reported repeatedly over time, and the same
event may be reported by multiple sensors. The sensors, e.g.,
network intrusion detection systems, are typically not aware
of alerts from other sensors, so it is up to the alert sharing
platform to aggregate the data. Redundancy in the input data
increase the cost of their analysis and may also influence its
results, so the aggregation has to be done before any advanced
analysis. Requirements on computing power and data storage
should also be taken into consideration as the security alerts
are considered to be “big data” at the time. Although many
alert aggregation and correlation methods have been proposed,
there are not enough case studies on the volumes of raw
and aggregated data and reduction rates of individual alert
aggregation methods.

To formalize the scope of our work, we pose three research
questions which we shall answer:

(i) Which security alerts can be aggregated without the loss
of information?
(ii) What is the volume of raw and aggregated data?
(iii) Is there an optimal time window for alert aggregation?
First, we have to understand why duplicates appear among
shared security alerts. Second, we are interested in the volume
of the data and its decrease after the aggregation. This problem
has practical implications on the design of tools for alerts shar-
ing and analysis. We are going to aggregate alerts in a database
snapshot from the SABU platform!. The ratio of aggregable
alerts in the snapshot will be the prime result of this case
study. Finally, time plays a significant role in the aggregation
process. We have to find which time window is optimal for
the aggregation, so we can avoid aggregating unrelated alerts
or leaving duplicates. The optimal time window should be
set according to typical differences in the timestamps from
duplicate security alerts.

II. RELATED WORK

The alerts used in this work were mostly generated by
network intrusion detection systems based on network flow
monitoring, which is suitable for large-scale and high-speed
networks. An overview of flow-based intrusion detection meth-
ods was presented by Sperotto et al. [2].

Chuvakin et al. [3] discussed which pieces of information
can help with aggregating log data for the purpose of security
analysis. The source of the alert (IDS, firewall) and destination
IP and port are discussed as suitable, while one has to be
cautious with aggregation by the source IP and port due to
possible spoofing. The same suggestions are applicable for
network data.

Alert aggregation and correlation belongs to the field of
collaborative intrusion detection, which has recently been
surveyed by Vasilomanolakis et al. [1]. Alert correlation in
particular was surveyed by Elshoush and Osman [4].

Valdes and Skinner [5] introduced three levels of sensor
correlation, out of which two corresponded to alert aggrega-
tion. The synthetic attack threads level is used for clustering
alerts of the same attack within a single sensor. The security
incidents level clusters the same attacks reported by different

Uhttps://sabu.cesnet.cz/



sensors. Similarity functions are used for clustering in both
cases. The reduction of alert volume in a live environment
was estimated to be from one half to two thirds.

Cuppens and Miege [6] proposed alert correlation in a
cooperative intrusion detection framework. In their work, alerts
from different intrusion detection systems are stored in a
relational database. Then, a set of expert rules is used to group
the alerts into clusters of the same occurrences of an attack.

Debar and Wespi [7] focused on the aggregation and
correlation of intrusion detection alerts. Raw alerts are first
preprocessed into a unified model with three attributes -
problem, source, and target. Alerts are clustered based on
these three attributes. Then, a relationship correlation takes
place in which duplicates and consequent alerts are identified.
Duplicate alerts, in this case, are alerts from different sensors.
Consequent alerts are alerts linked in a specific order that occur
within a given time interval.

Valeur et al. [8] present alert fusion as a part of their com-
prehensive approach to correlating intrusion detection alerts.
The goal of alert fusion is to combine alerts which represent
the detection of the same event by different intrusion detection
systems. They show a reduction rate of up to 28 %. However,
they have only one specific use case and use only 2 seconds
as the time window for alert fusion.

Lin et al. [9] used adaptive learning to reduce the number
of false positives and duplicates. Their method reduced the
number of alerts in two datasets to 25 % and 8 %, mostly
due to temporal correlation or association with a single attack.
However, the datasets from 1999 and 2007 do not reflect the
current situation and trends in cybersecurity.

III. USE CASES OF ALERT AGGREGATION

In this section, we describe the use cases for the aggregation
of security alerts and the circumstances under which an event
is reported multiple times. The aggregation of security alerts
is not only the deduplication of records in the database. It
requires an understanding of the security domain that extends
the traditional data deduplication tasks.

A. Duplicates

Deleting obvious duplicates is the easiest to understand
and their aggregation is easier to implement. However, the
duplicates may not often be seen as their appearance means
either an error or misconfiguration in the system. In the context
of this paper, we do not assume system errors and focus on
misconfiguration issues.

An example of alert duplication is a scenario in which the
same alert is reported repeatedly. For example, we have a net-
work with an intrusion detection system and reporting system.
The reporting system receives alerts from the IDS and shares
it via a sharing platform. However, the IDS also has a sharing
capability and shares the alerts as well. Although none of the
systems did anything wrong, the alert is duplicated. The reason
behind the duplication in this example is a misconfiguration
of the system. The network administrator should be aware that
both systems share the data and allow only one of them to do

it. An alternative example includes an IDS that reports alerts to
two different alert sharing platforms. The two platforms then
exchange alerts and thus, the duplicates appear.

If a duplicate appears in the system, it should not be exactly
the same as the original alert. Following the example, the
reporting system may add new items to the alert, such as
timestamps from receiving the alert in the reporting system
or an identifier of the reporting system as a mark that the
system processed the alert. However, the key alert items, i.e.,
source, target, timestamps, and event type, are the same.

B. Consequent Alerts

A consequent alert is an alert of an event that was already
reported, but the action, which caused the incident, still contin-
ues and the alert is reported repeatedly. Consequent alerts are
very interesting from the security perspective as they provide
information that the event reported in a previous alert is still
present.

For example, an intrusion detection system detects network
scanning in a 5-minute time window. An event is detected and
an alert is raised and shared within a sharing platform immedi-
ately. However, network scanning may last much longer. The
scanning is not mitigated and continues. The event is detected
again in the consecutive time window and a new alert is raised
and shared.

Apart from previous case, the two alerts look the same,
but there is a significant difference in timestamps. Thus, from
the security perspective, there is additional information about
the timing of the event in the aggregable alerts. The expected
method of aggregation is not just dismissing the later alerts, but
also providing the information about the continuation of the
event. Consider a sensor that raises alerts of an event detected
in a time window. If two alerts list consecutive time windows,
then the second alert could be dismissed and the time window
in the first alert should be updated with a new value that spans
the time windows in both alerts.

C. Overlapping Sensors

Another use case is the aggregation of alerts from overlap-
ping sensors. The sensors in this case have to overlap in their
detection scope, e.g., monitored network segment.

An example for this case is network scanning that is
detected by two network probes. The first probe monitors a
backbone network and the second probe monitors a campus
network that is connected to the backbone network. The alert
types and addresses of the scanning host are the same, but
there are two main differences. First, the identifiers of the
sensors are different. Second, the timestamps are different as
the network traffic flows from one sensor to another, although
this difference might be in an order of milliseconds.

Alerts from overlapping sensors should be treated with
caution. The alerts can be aggregated without loss the of
information, but it is not clear which data entries to dismiss
and which to keep. Naturally, the first reported alert can
be kept and the others can be dismissed. Following this
example, a problem arises when the two probes have different



monitoring scopes and the target is not specified. Then, the
location of the monitoring probe indicates a possible target.
Thus, the alert generated by the probe in a campus network
indicates more information than alert generated by the probe in
the backbone network. Similarly, the differences in thresholds
used by detection methods may influence the alerts, although
this actually has more influence if an alert is raised by a sensor
with higher threshold.

D. Non-overlapping Sensors

An even more complex use case of security alert aggregation
is the aggregation of alerts from non-overlapping sensors. In
this case, the sensors do not overlap in the scope of their
detection, e.g., each of them is located in a different network.

Consider an attacker who is scanning a large network.
Network sensors in subnetworks detect network scanning from
the same IP address at approximately the same time and share
the information. Thus, the sharing platform receives multiple
reports of the same event, but each report declares a different
target due to the limited monitoring scope of the sensors.

This use case is the most complex one due to its high context
sensitivity and potential loss of information. If two alerts are
found to be aggregable, then it is important to keep the infor-
mation from both. Following the scanning example, the targets
are typically scanned IP ranges, which should be merged
during the aggregation. The same applies for timestamps and
time windows contained in the alerts. Similarly to the alert
from overlapping sensors, additional information about the
(non-)overlapping of sensors is required. Finally, the type of
security event also plays a role. The scanning example is
straightforward, the attacker scanned a larger network segment
than the monitoring scope of the individual probes. However,
if an attacker at approximately the same time exploits two
honeypots, each in a different network, then the two alerts are
definitely worth correlating, but it is not a case for aggregation.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the results of the
SABU alert database analysis. First, we describe the dataset
used for the analysis. Then, the results of the four aggregation
methods are presented and followed by the overall results of
all the methods combined.

A. Dataset

The dataset was obtained from the SABU alert sharing
platform in June 2016. It contains 8,043,378 real-life alerts
from one week in IDEA? format. The number of alerts per
day ranged between 1,029,193 and 1,327,705. In total, 25
sensors from 7 organizations and 1 third-party alert sharing
system reported alerts of 17 event types. The sensors, mostly
flow-based intrusion detection systems and honeypots, were
deployed in the backbone network and campus networks. A
third-party sharing system contributed with 126,510 alerts.

We selected 7-tuple of data elements for the aggregation —
source and destination IPs and ports, event type, sensor ID, and

Zhttps://idea.cesnet.cz/

timestamp. Only 136 alerts did not contain an IP address in the
source or target nodes and only 167 alerts had IPv6 address
in the source or target nodes. Thus, we decided to omit alerts
without [Pv4 address due to their insignificant numbers. The
mandatory timestamp in IDEA contains a time of detection.
Only 412,029 alerts added the real starting time of an event.
Thus, only the mandatory timestamps were used.

B. Duplicates

Finding duplicates was the first and easiest task of alert
aggregation. We aggregated the alerts in the dataset according
to its source, destination, event type, sensor ID, and timestamp.
All of these five traits had to be equal for at least two alerts
to be considered duplicates.

Simple aggregation shows that 108,298 alerts had to be
aggregated, out of which 8,861 alerts turned out to be unique
and 99,437 alerts were duplicates. Thus, 1.24 % of alerts in
the dataset could be aggregated using this method.

C. Consequent Alerts

The next step in aggregating alerts in the dataset was the
aggregation of consequent alerts. We aggregated the alerts
according to their source IP, destination IP, destination port,
event type, and sensor ID. Source port was not included in
the list due to its volatility in time. A list of timestamps
was assigned to each unique tuple. If there were more than
one timestamp assigned to a unique tuple, the alerts could be
aggregated. The earliest timestamp is kept, while the duration
of the event or detection time windows should be updated, if
applicable.

In total, we discovered that 5,055,871 alerts could be aggre-
gated, out of which 676,615 alerts had a unique combination
of source IP, target IP, target port, event type, sensor ID, and
timestamp. The remaining 4,379,256 alerts shared the key
values, but differed in timestamp. Thus, 54.45 % of alerts from
the dataset were aggregated using this method.

Figure 1 shows differences in the timestamps of consequent
alerts. The shape of the graph corresponds to our assumptions.
There are two apparent horizontal lines representing the two
clusters of similar timestamp differences, one at 5 minutes, the
second at 1 hour. These are caused by the typical settings of
an intrusion detection system working in fixed time windows,
typically 5 minutes and 1 hour. The fluent transitions are
caused by sensors detecting in real time.

D. Overlapping Sensors

The aggregation of alerts from overlapping sensors includes
the aggregation of alerts according to their source IP, source
port, target IP, target port, and event type. A list of sensor IDs
was assigned to each unique tuple. If there were more sensor
IDs assigned to a unique tuple, the alerts could be aggregated.
The earliest timestamp is kept, while the detection time
windows and event duration should be updated, if applicable.

We discovered that 67,956 alerts could be aggregated, out
of which 33,344 alerts had a unique combination of source IP,
source port, target IP, target port, and event type. The remain-
ing 34,612 alerts were differed in sensor ID and timestamp.



7d+
4d- H

2d- r

1h+ r

5m r

Timestamp differences

1m+ r

T T
1 1e6 2e6 3e6 4e6 5e6
Ordered unique alerts

Fig. 1. Timestamp differences of aggregable alerts in decreasing order.

Using this method, 0.43 % of alerts from the dataset were
aggregated.

E. Non-overlapping Sensors

The aggregation of alerts from non-overlapping sensors first
aggregates the alerts according to their source IP, target port,
and event type. The alerts were aggregated if more target IPs
and sensor IDs were assigned to one couple. The earliest
timestamp is kept, while the detection time windows, event
duration, and range of targets should be updated, if applicable.

We discovered that 2,573,196 alerts could be aggregated, out
of which 171,033 alerts had a unique combination of source
IP, target port, and event type. The remaining 2,402,163 alerts
were aggregable with the unique alerts. Using this method we
aggregated 29.86 % of alerts from the dataset.

F. Aggregated Data

Using the four methods presented earlier, we aggregated
85.98 % of alerts from the dataset. Following the order of
methods, we prevented the same alerts from being aggregated
twice. Our results are comparable to the results of Lin et
al. [9], who estimated the number of unique alerts to be 8-
25 %. Although Lin et al. used an older and smaller dataset
and considered only two types of aggregates (continuing
events and the same events detected by multiple sensors),
the results are similar. Our results exceed estimates by Valdes
and Skinner [5], who assumed a 50-66 % reduction rate was
possible. The reduction rate of 25 % discussed by Valeur et
al. [8] for alerts reported by different sensors corresponds to
our finding on overlapping and non-overlapping sensors. We
believe that, based on our experience and with related work in
mind, a rule of thumb may be set for alert aggregation: up to
85 % of alerts can be aggregated by all the methods combined.

V. CONCLUSIONS

In this paper, we have presented a case study into the aggre-
gation of alerts from network intrusion detection systems in a
security alert sharing platform, named SABU. We presented
four prime use cases for alert aggregation and analyzed a real-
life dataset to discover volumes of raw and aggregated data
and to set an optimal time window for alert aggregation. The
data for the experiment were obtained from the SABU alert
sharing and analysis platform deployed in the national research
and education network of the Czech Republic.

In our future work, we are going to implement alert ag-
gregation tools and deploy them in the SABU platform. The
measured figures will be taken into consideration in the further
development of the SABU platform and its components, as
well as in further research. There are also several implications
regarding the sensors and quality of the data, which should
be resolved if the data from the sensor are going to be ex-
changed. Incomplete reports, such as network scanning reports
without target port, are ambiguous for further correlation. An
interesting challenge would be to optimize sensor settings to
minimize the time windows between the aggregated alerts.
Further, deeper examination of the structure of the network
would provide potentially interesting information on the causes
of sensor overlaps.

ACKNOWLEDGMENTS

We would like to thank CESNET for their support with data
acquisition and processing.

This research was supported by the Security Research Programme
of the Czech Republic 2015 - 2020 (BV III / 1 VS) granted
by the Ministry of the Interior of the Czech Republic under No.
V120162019029 The Sharing and analysis of security events in the
Czech Republic.

Martin Lastovicka is Brno Ph.D. Talent Scholarship Holder —
Funded by the Brno City Municipality.

REFERENCES

[1] E. Vasilomanolakis, S. Karuppayah, M. Miihlhduser, and M. Fischer,
“Taxonomy and Survey of Collaborative Intrusion Detection,” ACM
Comput. Surv., vol. 47, no. 4, pp. 55:1-55:33, May 2015.

[2] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” Communications
Surveys Tutorials, IEEE, vol. 12, no. 3, pp. 343-356, Third 2010.

[3] A. Chuvakin, K. Schmidt, and C. Phillips, Logging and Log Management:
The Authoritative Guide to Understanding the Concepts Surrounding
Logging and Log Management. Syngress Publishing, 2013.

[4] H. T. Elshoush and I. M. Osman, “Alert correlation in collaborative intel-
ligent intrusion detection systems — A survey,” Applied Soft Computing,
vol. 11, no. 7, pp. 43494365, 2011.

[5] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection, 2001, pp.
54-68.

[6] F. Cuppens and A. Miege, “Alert correlation in a cooperative intrusion
detection framework,” in Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on, 2002, pp. 202-215.

[7]1 H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2001, pp. 85-103.

[8] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive
approach to intrusion detection alert correlation,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 3, pp. 146—169, July 2004.

[91 H.-S. Lin, H.-K. Pao, C.-H. Mao, H.-M. Lee, T. Chen, and Y.-J. Lee,
“Adaptive alarm filtering by causal correlation consideration in intru-
sion detection,” in New Advances in Intelligent Decision Technologies.
Springer, 2009, pp. 437-447.



