JANOUŠOVÁ, Eva, Giovanni MONTANA, Tomáš KAŠPÁREK a Daniel SCHWARZ. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research. Frontiers in Neuroscience, Lausanne: Frontiers Media S.A., 2016, roč. 10, AUG, s. 1-15. ISSN 1662-453X. doi:10.3389/fnins.2016.00392.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research
Autoři JANOUŠOVÁ, Eva (203 Česká republika, garant, domácí), Giovanni MONTANA (826 Spojené království), Tomáš KAŠPÁREK (203 Česká republika, domácí) a Daniel SCHWARZ (203 Česká republika, domácí).
Vydání Frontiers in Neuroscience, Lausanne, Frontiers Media S.A. 2016, 1662-453X.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor Biotechnologie a bionika
Stát vydavatele Švýcarsko
Utajení není předmětem státního či obchodního tajemství
Impakt faktor Impact factor: 3.566
Kód RIV RIV/00216224:14110/16:00088925
Organizační jednotka Lékařská fakulta
Doi http://dx.doi.org/10.3389/fnins.2016.00392
UT WoS 000381850500001
Klíčová slova anglicky computational neuroanatomy; pattern recognition; classification; penalized linear discriminant analysis; support vector machines; cross-validation; magnetic resonance imaging; schizophrenia
Štítky EL OK, podil
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Ing. Mgr. Věra Pospíšilíková, učo 9005. Změněno: 14. 12. 2016 10:10.
Anotace
We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.
Návaznosti
NT13359, projekt VaVNázev: Pokročilé metody rozpoznávání MR obrazů mozku pro podporu diagnostiky neuropsychiatrických poruch
Investor: Ministerstvo zdravotnictví ČR, Resortní program výzkumu a vývoje - MZ III. na léta 2010 - 2015 (IGA)
Typ Název Vložil/a Vloženo Práva
EL_1364839.pdf  Pospíšilíková, V. 14. 12. 2016

Práva

Právo číst
  • osoba Mgr. Eva Špillingová, učo 110713
  • osoba Soňa Böhmová, učo 232884
Právo vkládat
 
Právo spravovat
  • osoba Ing. Mgr. Věra Pospíšilíková, učo 9005
Atributy
 
Vytisknout
Požádat autora o autorský výtisk Zobrazeno: 9. 4. 2020 04:33