Detailed Information on Publication Record
2016
Inserting Multiple Edges into a Planar Graph
CHIMANI, Markus and Petr HLINĚNÝBasic information
Original name
Inserting Multiple Edges into a Planar Graph
Name in Czech
Vkládání více hran do rovinného grafu
Authors
CHIMANI, Markus (276 Germany) and Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution)
Edition
Germany, 32nd International Symposium on Computational Geometry (SoCG 2016), p. "30:1"-"30:15", 15 pp. 2016
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/00216224:14330/16:00088509
Organization unit
Faculty of Informatics
ISBN
978-3-95977-009-5
ISSN
Keywords in English
crossing number; crossing minimization; planar insertion
Tags
Tags
International impact, Reviewed
Změněno: 27/4/2017 07:05, RNDr. Pavel Šmerk, Ph.D.
V originále
Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k.
In Czech
Podáme FPT algoritmus pro problém vložení více hran do rovinného grafu s minimalizací průsečíků.
Links
GBP202/12/G061, research and development project |
|