D 2016

Crossing Number is Hard for Kernelization

DERŇÁR, Marek and Petr HLINĚNÝ

Basic information

Original name

Crossing Number is Hard for Kernelization

Name in Czech

Průsečíkové číslo je těžké kernelizovat

Authors

DERŇÁR, Marek (703 Slovakia, belonging to the institution) and Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution)

Edition

Germany, 32nd International Symposium on Computational Geometry (SoCG 2016), p. "42:1"-"42:10", 10 pp. 2016

Publisher

Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/16:00088543

Organization unit

Faculty of Informatics

ISBN

978-3-95977-009-5

ISSN

Keywords in English

crossing number; kernelization; parameterized complexity

Tags

International impact, Reviewed
Změněno: 27/4/2017 07:07, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

The graph crossing number problem, cr(G)<=k, asks for a drawing of a graph G in the plane with at most k edge crossings. Although this problem is in general notoriously difficult, it is fixed-parameter tractable for the parameter k [Grohe, STOC 2001]. This suggests a closely related question of whether this problem has a polynomial kernel, meaning whether every instance of cr(G)<=k can be in polynomial time reduced to an equivalent instance of size polynomial in k (and independent of |G|). We answer this question in the negative. Along the proof we show that the tile crossing number problem of twisted planar tiles is NP-hard, which has been an open problem for some time, too, and then employ the complexity technique of cross-composition. Our result holds already for the special case of graphs obtained from planar graphs by adding one edge.

In Czech

Dokážeme, že problém průsečíkového čísla grafu nelze polynomiálně kernelizovat, což znamená, že nelze danou instanci v polynomiálním čase převést na ekvivalentní instanci polynomiální velikosti v parametru k.

Links

GA14-03501S, research and development project
Name: Parametrizované algoritmy a kernelizace v kontextu diskrétní matematiky a logiky
Investor: Czech Science Foundation
MUNI/A/0935/2015, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A
MUNI/A/0945/2015, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace V.
Investor: Masaryk University, Category A