Detailed Information on Publication Record
2016
Crossing Number is Hard for Kernelization
DERŇÁR, Marek and Petr HLINĚNÝBasic information
Original name
Crossing Number is Hard for Kernelization
Name in Czech
Průsečíkové číslo je těžké kernelizovat
Authors
DERŇÁR, Marek (703 Slovakia, belonging to the institution) and Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution)
Edition
Germany, 32nd International Symposium on Computational Geometry (SoCG 2016), p. "42:1"-"42:10", 10 pp. 2016
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/00216224:14330/16:00088543
Organization unit
Faculty of Informatics
ISBN
978-3-95977-009-5
ISSN
Keywords in English
crossing number; kernelization; parameterized complexity
Tags
Tags
International impact, Reviewed
Změněno: 27/4/2017 07:07, RNDr. Pavel Šmerk, Ph.D.
V originále
The graph crossing number problem, cr(G)<=k, asks for a drawing of a graph G in the plane with at most k edge crossings. Although this problem is in general notoriously difficult, it is fixed-parameter tractable for the parameter k [Grohe, STOC 2001]. This suggests a closely related question of whether this problem has a polynomial kernel, meaning whether every instance of cr(G)<=k can be in polynomial time reduced to an equivalent instance of size polynomial in k (and independent of |G|). We answer this question in the negative. Along the proof we show that the tile crossing number problem of twisted planar tiles is NP-hard, which has been an open problem for some time, too, and then employ the complexity technique of cross-composition. Our result holds already for the special case of graphs obtained from planar graphs by adding one edge.
In Czech
Dokážeme, že problém průsečíkového čísla grafu nelze polynomiálně kernelizovat, což znamená, že nelze danou instanci v polynomiálním čase převést na ekvivalentní instanci polynomiální velikosti v parametru k.
Links
GA14-03501S, research and development project |
| ||
MUNI/A/0935/2015, interní kód MU |
| ||
MUNI/A/0945/2015, interní kód MU |
|