Detailed Information on Publication Record
2016
Tree-depth and Vertex-minors
HLINĚNÝ, Petr, O-joung KWON, Jan OBDRŽÁLEK and Sebastian ORDYNIAKBasic information
Original name
Tree-depth and Vertex-minors
Authors
HLINĚNÝ, Petr (203 Czech Republic, guarantor, belonging to the institution), O-joung KWON (410 Republic of Korea), Jan OBDRŽÁLEK (203 Czech Republic, belonging to the institution) and Sebastian ORDYNIAK (276 Germany, belonging to the institution)
Edition
European Journal of Combinatorics, Elsevier, 2016, 0195-6698
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.786
RIV identification code
RIV/00216224:14330/16:00088544
Organization unit
Faculty of Informatics
UT WoS
000376056600004
Keywords in English
tree-depth; shrub-depth; vertex-minor; pivot-minor
Tags
Tags
International impact, Reviewed
Změněno: 17/4/2018 09:45, prof. RNDr. Petr Hliněný, Ph.D.
V originále
In a recent paper Kwon and Oum (2014), Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show how a suitable adaptation of known results implies that shrub-depth is monotone under taking vertex-minors, and we prove that every graph class of bounded shrub-depth can be obtained via vertex-minors of graphs of bounded tree-depth. While we exhibit an example that pivot-minors are generally not sufficient (unlike Kwon and Oum (2014)) in the latter statement, we then prove that the bipartite graphs in every class of bounded shrub-depth can be obtained as pivot-minors of graphs of bounded tree-depth.
In Czech
Dokazujeme, že každou třída grafů omezené shrub-depth lze získat pomocí vrcholových minorů z třídy omezené tree-depth. V obecnosti toto neplatí pro pivot minory.
Links
GA14-03501S, research and development project |
|