Detailed Information on Publication Record
2017
Kernelization using structural parameters on sparse graph classes
GAJARSKÝ, Jakub, Petr HLINĚNÝ, Jan OBDRŽÁLEK, Sebastian ORDYNIAK, Felix REIDL et. al.Basic information
Original name
Kernelization using structural parameters on sparse graph classes
Authors
GAJARSKÝ, Jakub (703 Slovakia, belonging to the institution), Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution), Jan OBDRŽÁLEK (203 Czech Republic, belonging to the institution), Sebastian ORDYNIAK (276 Germany, belonging to the institution), Felix REIDL (276 Germany), Peter ROSSMANITH (276 Germany), Fernando VILLAAMIL (276 Germany) and Somnath SIKDAR (356 India)
Edition
Journal of Computer and System Sciences, SAN DIEGO, Elsevier, 2017, 0022-0000
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.497
RIV identification code
RIV/00216224:14330/17:00094632
Organization unit
Faculty of Informatics
UT WoS
000388430000015
Keywords in English
Parameterized complexity; Kernelization; Nowhere dense graphs; Finite integer index; Treedepth
Tags
Tags
International impact, Reviewed
Změněno: 27/4/2018 10:06, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
We prove that graph problems with finite integer index have linear kernels on graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For nowhere dense graph classes, our result yields almost-linear kernels. We also argue that such a linear kernelization result with a weaker parameter would fail to include some of the problems covered by our framework. We only require the problems to have FII on graphs of constant treedepth. This allows to prove linear kernels also for problems such as Longest-Path/Cycle, Exact-s, t-Path, Treewidth, and Pathwidth, which do not have FII on general graphs. (C) 2016 Elsevier Inc. All rights reserved.
Links
GA14-03501S, research and development project |
| ||
MUNI/A/0945/2015, interní kód MU |
|