Detailed Information on Publication Record
2016
Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1-xMnx)(2)Se-3
SANCHEZ-BARRIGA, J., A. VARYKHALOV, G. SPRINGHOLZ, H. STEINER, R. KIRCHSCHLAGER et. al.Basic information
Original name
Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1-xMnx)(2)Se-3
Authors
SANCHEZ-BARRIGA, J. (276 Germany), A. VARYKHALOV (276 Germany), G. SPRINGHOLZ (40 Austria), H. STEINER (40 Austria), R. KIRCHSCHLAGER (40 Austria), G. BAUER (40 Austria), Ondřej CAHA (203 Czech Republic, guarantor, belonging to the institution), E. SCHIERLE (276 Germany), E. WESCHKE (276 Germany), A. A. UENAL (276 Germany), S. VALENCIA (276 Germany), M. DUNST (276 Germany), J. BRAUN (276 Germany), H. EBERT (276 Germany), J. MINAR (203 Czech Republic), E. GOLIAS (276 Germany), L. V. YASHINA (643 Russian Federation), A. NEY (40 Austria), Václav HOLÝ (203 Czech Republic) and O. RADER (276 Germany)
Edition
Nature Communications, London, Nature Publishing Group, 2016, 2041-1723
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10302 Condensed matter physics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 12.124
RIV identification code
RIV/00216224:14740/16:00093653
Organization unit
Central European Institute of Technology
UT WoS
000371014500001
Keywords in English
SURFACE; FERROMAGNETISM; TRANSITION; GA1-XMNXAS; FERMIONS
Tags
Tags
International impact, Reviewed
Změněno: 1/3/2019 11:35, doc. Mgr. Ondřej Caha, Ph.D.
Abstract
V originále
Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi1-xMnx)(2)Se-3 is a prototypical magnetic topological insulator with a pronounced surface band gap of similar to 100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.