J 2016

Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1-xMnx)(2)Se-3

SANCHEZ-BARRIGA, J., A. VARYKHALOV, G. SPRINGHOLZ, H. STEINER, R. KIRCHSCHLAGER et. al.

Basic information

Original name

Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1-xMnx)(2)Se-3

Authors

SANCHEZ-BARRIGA, J. (276 Germany), A. VARYKHALOV (276 Germany), G. SPRINGHOLZ (40 Austria), H. STEINER (40 Austria), R. KIRCHSCHLAGER (40 Austria), G. BAUER (40 Austria), Ondřej CAHA (203 Czech Republic, guarantor, belonging to the institution), E. SCHIERLE (276 Germany), E. WESCHKE (276 Germany), A. A. UENAL (276 Germany), S. VALENCIA (276 Germany), M. DUNST (276 Germany), J. BRAUN (276 Germany), H. EBERT (276 Germany), J. MINAR (203 Czech Republic), E. GOLIAS (276 Germany), L. V. YASHINA (643 Russian Federation), A. NEY (40 Austria), Václav HOLÝ (203 Czech Republic) and O. RADER (276 Germany)

Edition

Nature Communications, London, Nature Publishing Group, 2016, 2041-1723

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10302 Condensed matter physics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 12.124

RIV identification code

RIV/00216224:14740/16:00093653

Organization unit

Central European Institute of Technology

UT WoS

000371014500001

Keywords in English

SURFACE; FERROMAGNETISM; TRANSITION; GA1-XMNXAS; FERMIONS

Tags

Tags

International impact, Reviewed
Změněno: 1/3/2019 11:35, doc. Mgr. Ondřej Caha, Ph.D.

Abstract

V originále

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi1-xMnx)(2)Se-3 is a prototypical magnetic topological insulator with a pronounced surface band gap of similar to 100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.