J 2016

Geometric properties of homogeneous parabolic geometries with generalized symmetries

GREGOROVIČ, Jan and Lenka ZALABOVÁ

Basic information

Original name

Geometric properties of homogeneous parabolic geometries with generalized symmetries

Authors

GREGOROVIČ, Jan (203 Czech Republic, guarantor, belonging to the institution) and Lenka ZALABOVÁ (203 Czech Republic)

Edition

Differential Geometry and its Applications, AMSTERDAM, Elsevier, 2016, 0926-2245

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.497

RIV identification code

RIV/00216224:14310/16:00088699

Organization unit

Faculty of Science

UT WoS

000389092700022

Keywords in English

Homogeneous parabolic geometries; Generalized symmetries; Holonomy reductions; Correspondence and twistor spaces; Invariant distributions; Invariant Weyl connections

Tags

Změněno: 6/4/2017 16:59, Ing. Andrea Mikešková

Abstract

V originále

We investigate geometric properties of homogeneous parabolic geometries with generalized symmetries. We show that they can be reduced to a simpler geometric structures and interpret them explicitly. For specific types of parabolic geometries, we prove that the reductions correspond to known generalizations of symmetric spaces. In addition, we illustrate our results on an explicit example and provide a complete classification of possible non-trivial cases.

Links

GBP201/12/G028, research and development project
Name: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku
Investor: Czech Science Foundation