
Research Article
Kinetic Study of Atmospheric Pressure Nitrogen
Plasma Afterglow Using Quantitative Electron Spin
Resonance Spectroscopy

A. Tálský, O. Štec, M. Pazderka, and V. Kudrle

Department of Physical Electronics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic

Correspondence should be addressed to V. Kudrle; kudrle@sci.muni.cz

Received 14 September 2016; Revised 18 November 2016; Accepted 28 November 2016; Published 19 March 2017

Academic Editor: Nikša Krstulović
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Quantitative electron spin resonance spectroscopy is used to measure nitrogen atom density in atmospheric pressure dielectric
barrier discharge afterglow. The experiment shows that oxygen injection into early afterglow increases the nitrogen dissociation in
certain parts of the afterglowwhile it is decreased in the rest of the afterglow. Numerical kineticmodelling supports and explains the
experimental data while the best fit provides some a priori unknown parameters such as initial concentrations and rate constants.

1. Introduction

Nonequilibrium cold plasmas at atmospheric pressure and
especially dielectric barrier discharges are getting increased
attention of both basic and applied research. They are widely
used in many industrial applications from ozone production
[1] and lighting [2] to plasma surface modifications [3].Their
main advantages over other competing technologies are the
ease-of-use, economy, and environmental considerations [4].
Besides the already established applications, there is rapid
expansion of atmospheric pressure plasmas into new areas,
such as plasma-chemical synthesis of substances which are
difficult to attain by other techniques [5–7], plasma medicine
[8], material disinfection and sterilisation [9], and use in
cosmetics [10] or in fashion industry [11].

Nitrogen plasmas are often used as a source of high
density nitrogen atoms. Molecular nitrogen is rather inert
gas, but atomic nitrogen is quite reactive, which is made
use of in plasma deposition of nitride films [12] or plasma
nitridation [13]. Although the low pressure plasmas are
currently dominating this field, there is strong incentive
for research and development of nitrogen plasma sources
operating at atmospheric pressure [14].

In order to develop new plasma-chemical technologies
it is important to understand the elementary processes
taking place in both the active plasma and plasma afterglow.

Nitrogen, despite being a simple diatomicmolecule, has quite
complex plasma chemistry and kinetics, especially in mix-
tures with oxygen [15, 16]. As stated above, the nitrogen atoms
play a significant kinetic role due to their high reactivity.Their
concentration is then one of the most important parameters
to be experimentally determined. Although there is broad
range of experimental techniques able to detect N atoms, for
example, optical emission spectroscopy, only few of them are
suitable for absolute, not relative, measurements. UV absorp-
tion spectroscopy [17], NO titration [18], mass spectroscopy
(MS) [19], laser induced fluorescence (LIF) [20], and catalytic
probes [21], for example, are widely used. Another challenge
is an operation of such diagnostic technique in atmospheric
pressure, which, for example, greatly increases quenching
in LIF, complicates pumping in MS, or totally changes the
plasma chemistry (NO titration).

In this paper, the electron spin/paramagnetic resonance
(ESR/EPR) [30–32] method is used for N atom density
determination. This method is very useful for detection
and identification of paramagnetic particles and especially
radicals [33–35]. Although the method is routinely used in
chemistry, its use in plasma physics is relatively rare. Since the
pioneering works [36–38], other, mostly laser based methods
appeared which are now considered mainstream.

Electron spin or paramagnetic resonance (ESR/EPR)
is essentially microwave absorption spectroscopy [39] on
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Figure 1: Schematic drawing of the experimental set-up.

Zeeman split [40] levels.The transitions with very low energy
separation between the upper and the bottom levels (as is
the case inmicrowave spectroscopy) are very easily disturbed
by the collisions with other particles.The collisional/pressure
broadening of absorption line can be quite pronounced [41,
42], especially for gas phase atomic and molecular lines with
very low natural linewidths. This makes most of the species
(for extensive list, see [43]), including, for example, atomic
oxygen, difficult to detect in atmospheric pressure plasmas.
However, the particles in s-state, such as nitrogen or hydrogen
atoms in ground state, do not exhibit pressure broadening and
can be detected by ESR/EPR even at atmospheric pressure.

There are a number of works, both theoretical and
experimental, dealing with low pressure plasma diagnos-
tics by ESR/EPR method [44–50]. However, due to above-
mentioned difficulties of pressure broadening, the diagnos-
tics of atmospheric pressure plasmas by EPR/ESR is rather
unresearched topic, as our previous paper [51] is, to authors’
best knowledge, still the only one published.

Although the nitrogen andoxygenplasmas are studied for
very long time, there is still intensive research [52–54] going
on. The discharges in N2-O2 mixtures have very complicated
plasma kinetics and some effects, especially in mixtures with
low O2/N2 ratio, are not fully explained yet. In our previous
work [55] it was reported that adding of small amount
of oxygen into a low pressure nitrogen plasma afterglow
causes an increase of nitrogen atom density. In this paper we
extend the study of the influence of oxygen admixture on the
nitrogen afterglow to atmospheric pressure.

2. Experimental Apparatus and Methods

2.1. Experimental Set-Up. The experimental apparatus is
depicted in Figure 1. Nitrogen plasma at atmospheric pres-
sure was produced using industrial ozoniser LifeTech 50.
It is based on coaxial dielectric barrier discharge, excited

by 25–35W power at 15 kHz frequency. The stainless steel
inner electrode has approx. 2 cm diameter and is separated
by 0.7mm plasma gap and 2.5mm thick corundum (Al2O3)
ceramics from the outer electrode which is realised by an
aluminium foil tightly wrapped around the ceramic tube.
The discharge tube is approx. 15 cm long. Although the metal
electrode in direct contact with plasma can significantly
reduce N atom density in the effluent due to increased
surface recombination/reassociation, this design [56] is well
established in industrial ozonisers.

The discharge was operated in flowing (12 standard litres
per minute) nitrogen, coming from pressurised cylinder
(Messer-Griesheim, purity 99.995%) via pressure reduction
valve. The volumetric flow rate of nitrogen was measured
by flowmeter with floating element (rotameter UPLS-R3).
Downstream from the plasma source, the oxygen is option-
ally introduced.The oxygen comes from pressurised cylinder
(Messer-Griesheim, purity 99.995%) via Hastings mass flow-
controller maintaining the oxygen flow at 7.5 sccm (standard
cubic centimetre per minute). The tubing is made from
polyethylene and stainless steel.

The oxygen is introduced into the afterglow tube just
downstream from the plasma generator using an inlet three-
way valve. This configuration permits presetting the oxygen
flow on the flow-controller and rapidly switches on and off
the oxygen admixture. The distance between the output port
of the plasma generator and the inlet of oxygen is 6 cm.
The afterglow tube is made of fused silica with 10mm outer
diameter and 8mm inner diameter. This tube passes through
ESR/EPR spectrometer resonator and ends in another outlet
three-way valve. In normal operation the plasma afterglow
vents into open atmosphere and the afterglow tube length
(approx. 2.5 metres) together with high gas flow prevents
any back-diffusion of air into the afterglow or plasma. In
second position of this outlet valve the whole apparatus can
be pumped down by the rotary vane oil vacuumpump.This is
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used for calibration by molecular oxygen at reduced pressure
and for degassing/cleaning as before every measurement
series the whole plasma system is evacuated to pressure
about 10 Pa to remove residual impurities. After that, the
nitrogen flow is switched on and the outlet three-way valve
is turned to normal position. Then the discharge is run 1
hour atmaximumpower to burn-in the plasma generator and
remove the possible contamination off the electrode. Only
after such procedure are the experiments started.

The distance from the inlet of oxygen admixture to the
measuring ESR/EPR resonator can be changed by shifting
the whole plasma system. To ease this, the plasma system
including afterglow tube is placed on nonmagnetic rails
parallel to ESR/EPR resonator axis. The furthest possible
position is limited by the rail length to 90 cm. However, in
the present study the maximum extension was not used as
the ESR/EPR signal in this extreme position was already
difficult to measure. The minimum distance in which the
measure could be carried out is about 20 cm. Although it
is mechanically possible to place the discharge closer to
the resonator, at shorter distances the magnetic field of the
ESR/EPR spectrometer electromagnet affected the plasma
generator.

The ESR/EPR spectrometer JEOL JES-PE is specially
adapted for use in plasma physics. It is classical continuous
wave spectrometer [34] using klystron source operating at X
band and with standard sensitivity around 1010 paramagnetic
particles in the interaction volume of TE011 resonator. The
output voltage of the analogue spectrometer is measured by
digital voltmeter (Metra M1T390, 5 digits) and transmitted
to a personal computer via GPIB. The ESR/EPR signal
is analysed and postprocessed using custom software. It
automatically identifies the spectral lines and calculates their
peak-to-peak height, peak-to-peak width 𝑤, and area under
the absorption line 𝐼N (as ESR/EPR lines are typically [34]
recorded in the form of derivation, double integration is
needed).

2.2. The Principle of Measurement and Calibration Procedure.
The ESR/EPR phenomenon is based on resonant absorption
of microwave photons by transition between Zeeman split
[40] energy levels. Typically, the resonance is achieved by
variable magnetic field (which sets the energy level splitting)
while the microwave frequency (i.e., photon energy) is fixed.
The area under absorption spectral line is proportional [38]
to the concentration of absorbing paramagnetic particles.The
proportionality constant depends on spectrometer settings
and the transition probability (Einstein coefficient). After
a calibration of the spectrometer by a known sample it
is possible to measure the concentration of paramagnetic
particles absolutely [57].

In this work, the spectrometer calibration [44] is carried
out using molecular oxygen O2. The measuring resonator is
filled with gaseousmolecular oxygen at known concentration
(calculated from pressure and temperature), its intensive
spectral line C (the traditional naming, found in many
papers, e.g., [38, 41, 43, 44]) is recorded, and corresponding
double integral 𝐼C is calculated. Using the same settings of
the spectrometer, the ESR/EPR line of atomic nitrogen is
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Figure 2: Calibration of EPR spectrometer using the line C of
molecular oxygen. Linear dependency of absorption line integral
𝐼C (i.e., double integral of measured signal) on oxygen pressure
validates the calibration process and its slope provides a constant
[O2]/𝐼C needed for the calibration.

recorded and its double integral 𝐼N is calculated. Knowing
the Einstein coefficients of both species the concentration of
atomic nitrogen is given by simple relation

[N] = 5.88 ⋅ 10−3𝐼N/𝐼C × [O2].

The numeric constant in this formula is the ratio of Einstein
coefficient of molecular oxygen line C and that of one
component of atomic nitrogen triplet [43].

As the oxygen calibration is carried out in the flow-
regime, due to Hagen–Poiseuille law [58] there exist pressure
gradients along the tube,making the pressure in the ESR/EPR
resonator slightly different from the one indicated by pressure
meter. The vacuum conductivity of the tube depends [59]
on pressure, too. Moreover, as at low pressures the partial
pressure of O2 could be smaller than the total pressure
indicated due to small vacuum leaks, finite base pressure of
the pump used, or degassing from walls, it is better to record
O2 line for several indicated pressures than to rely on single
value only. The result of such calibration measurement is
shown in Figure 2.

The ESR/EPR lines of atomic nitrogen are extremely
narrow and therefore sensitive to any broadening [41]. The
ground state of nitrogen N(4S3/2) has zero orbital magnetic
momentum and its paramagnetism is given only by the elec-
tron spin. In that case there should be no collision induced
broadening; its spectral linewidth should be independent of
pressure [60]. In work [61] this was studied in the pressure
range from 50 to 600 Pa and in temperature range from
80 to 300K. It was found that with decreasing temperature
the apparent linewidth 𝑤 = 6𝜇T remained constant, while
the integral and thus the concentration [N] decreased. The
linewidth was thus independent of N atom density, which
suggested that the role of spin-spin relaxation at these N
concentrations (around 1013–1014 cm−3) is negligible.
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Figure 3: Linewidth of N atom ground state (4S3/2) EPR line as a
function of oxygen admixture.

In present work, a similar measurement of N(4S3/2)
linewidth was carried out in pure nitrogen afterglow but
at atmospheric pressure. Practically the same value 𝑤 =
6.4 𝜇T was observed. The linewidth (and spectral line shape)
being constant, the concentration of N atoms should be
directly proportional to the absorption line height and by
consequence also to the peak-to-peak height of the measured
(i.e., absorption derivative) line. It can be advantageous to
use this peak-to-peak height over the spectral line integral as
the latter exhibits much higher statistical variations due to an
increased influence of a noise overlaying the line shoulders.

However, a presence of other paramagnetic particles can
affect even the s-states. The experimental result, nitrogen
spectral linewidth as a function of molecular oxygen admix-
ture, is shown in Figure 3. The changing nitrogen linewidth
prevents the use of simple line height as concentration
indicator and the integral must be used instead. This effect
is consistent with [60].

3. Results and Discussions

3.1. Experimental Results. Electron paramagnetic/spin reso-
nancewas used tomeasure the concentration of atomic nitro-
gen N(4S3/2) in atmospheric pressure discharge afterglow.
This density [N] was measured along fused silica tube in pure
nitrogen afterglow and with 625 ppm of oxygen injected into
the early afterglow; see Figure 4.

The most important result is the fact that the two
curves apparently intersect. It means that a small admixture
of oxygen can cause both an increase and a decrease in
concentration of nitrogen atoms, depending on which part
of the afterglow is observed. This nontrivial behaviour is
a typical demonstration of complexities inherent in N2-O2
kinetics.

In flowing kinetic studies, if the gas velocity is known, the
spatial distribution of measured species can be transferred to
their temporal evolution. Sometimes the same gas velocity in
the whole cross-section (i.e., plug flow) is assumed without
any further consideration. However, there can be a significant
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Figure 4: Spatial distribution of the nitrogen atom concentration
(in ground state) along the afterglow tube for two cases: with and
without 625 ppm oxygen admixture.

radial gradient of gas velocity due to a shear flow and
a boundary layer. While a laminar flow in circular tube
produces well-known parabolic velocity profile, in a well-
developed turbulent flow the shear zone is thin compared
to the tube diameter, so the plug flow is appropriate. The
character of flow in a tube can be deduced from the Reynolds
number [62]

𝑅 = 𝑢𝑑/],

where 𝑢 is mean flow velocity, 𝑑 is the inner tube diameter,
and ] is cinematic viscosity. For nitrogen at standard pressure
and temperature ] = 1.50 ⋅ 10−5m2 s−1 according to [63],
which gives 𝑅 = 2100 for our experimental conditions. This
value falls in critical Reynolds number range 𝑅 = 1800–2300
where a transition between the laminar and the turbulent flow
happens [64]. One can expect that the inhomogeneity caused
by the lateral oxygen inlet together with other imperfections
introduces some additional turbulence. Based on this reason-
ing, there is enough turbulence to consider the plug flow as a
valid approximation in this paper, too.

In that case, the radially uniform flow velocity is approx.
4m/s. Using this value, the measured dependence of the
nitrogen atom density on position in the afterglow (Figure 4)
was recalculated to the dependence on time; see Figure 5.

It is experimentally impossible to measure the concen-
tration near the oxygen inlet (i.e., at times close to 𝑡 = 0 s)
as the T-piece (needed for the inlet) cannot pass through
the ESR/EPR measuring resonator opening and the close
distance between the plasma generator and the ESR/EPR
electromagnet would magnetically influence the plasma gen-
erator and the plasma itself. However, if one excludes a back-
diffusion, it is evident that with or without oxygen admixture
the value at 𝑡 = 0 s must be the same; that is, both curves
must start at the same initial value depicted in Figure 5 by red
circle. While this common initial value is a priori unknown



Journal of Spectroscopy 5

Table 1: Main plasma-chemical reactions in the pure nitrogen afterglow.

Reaction number Reaction Rate coefficient Reference
(1) N(4S) + N(4S) + N2 → N2(A) + N2 𝑘1 = 1.05 ⋅ 10

−13 cm3 s−1 [22]
(2) N(4S) + wall→ N2 + wall 𝑘2 = see text
(3) N2(A) + N(4S)→ N2(X) + N(2P) 𝑘3 = 5 ⋅ 10

−11 cm3 s−1 [23]
(4) N(2P) + N2 → N(2D) + N2 𝑘4 = 2 ⋅ 10

−18 cm3 s−1 [24]
(5) N(2P) + N→ N(2D) + N 𝑘5 = 1.8 ⋅ 10

−12 cm3 s−1 [25]
(6) N(2D) + N2 → N(4S) + N2 𝑘6 = 6 ⋅ 10

−15 cm3 s−1 [26]
(7) N2(A) + N2(A)→ N2(C) + N2 𝑘7 = 2 ⋅ 10

−12 cm3 s−1 [27]
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Figure 5: Data from the previous figure recalculated from distance
to time.The rough estimation of initial [N] value at 𝑡 = 0 s is shown,
too. The sketch of a reasonable time evolution is shown by dashed
lines.

it effectively sets the probable shapes of both curves (with
and without oxygen admixture) in the unmeasurable region.
These are shown in Figure 5 using the dashed lines. One can
see that the case without oxygen admixture should be simply
governed by losses while the case with oxygen admixture
initially exhibits some process producing the nitrogen atoms
and only later the losses dominate. Higher losses of N with
O2 present cause the steeper descent of this curve and so both
curves intersect.

3.2. Kinetic Modelling of Plasma Afterglow in Pure Nitrogen.
The model is based on collisional processes between the
principal species in the nitrogen afterglow: N2 molecules,
electronically excited molecules N2(A), atoms N(S), N(P),
and N(D), and it takes into account also the wall pro-
cesses. The model is focused on N(4S) and so the species
N2(X,v) despite being another important energy carrier is
not included as it cannot directly cause N2 dissociation
and it does not exhibit very strong quenching by nitrogen
atoms (which N2(A) does). An overview of the main plasma-
chemical processes based on [28] is presented in Table 1.

The kinetic equations describing the processes in Table 1
were transformed to a set of differential equations and solved

numerically using the Eulermethod. As thismethodmight be
unstable for rapidly changing functions, it is necessary to use
sufficiently small time-step. This convergence was verified in
the presented model. Some parameters, such as 𝑘2 and initial
concentrations of N(4S) andN2(A), are a priori unknown and
must be determined by fitting to the experimental data. The
concentration ofmolecular nitrogen [N2] = 2.77⋅10

19 cm−3 at
standard pressure and temperature was used as one of initial
values.

The reaction (1) describes the volume recombination and
the reaction (2) the wall recombination of atomic nitrogen
in ground state N(4S). The model includes the reactions of
the N(2P), N(2D), and N2(A) metastables, too. However, sig-
nificant simplifications are possible. In the experiment, only
the N(4S) concentration is actually measured. Moreover, the
metastable N atoms generally end in ground state (reactions
(4)–(6)). So the reaction (3) effectively produces one N(4S)
atom and is equivalent to N2(A) deexcitation.

Further simplification stems from the mutual ratio of
[N2(A)] and [N(4S)]. Although these values are a priori
unknown, they can be roughly estimated. A rough estimation
of the initial concentration [N2(A)]0 of 10

11 cm−3 can be
taken from papers [65–67], which used sufficiently similar
conditions to the present ones (atmospheric pressure nitro-
gen afterglow operated in similar tube diameter and similar
input power). As the visual extrapolation of pure nitrogen
curve (red hollowdiamonds) in Figure 5 gives the initial value
of [N(4S)]0 around 1013 cm−3, one may safely assume that
[N(4S)]0 > [N2(A)]0.

Using these simplifications, the “full” model of Table 1
is effectively reduced to the set of kinetic equations (1), (2),
(3), and (7).The relative difference 𝛿 = ([N(4S)]|reduced model −
[N(4S)]|full model)/[N(

4S)]|reduced model between the reduced
and full models is shown in Figure 6 for different initial ratios
of [N(4S)] and [N2(A)].

In the first few milliseconds there is a big difference
between the full and the reduced models due to the reaction
(3). But in later reaction times, in which the real experiment
is carried out (as discussed above, due to experimental
constraints it is not possible to measure at afterglow positions
before 0.06 s), there is nearly negligible difference between
the full and the reduced models. Taking into account the
experimental error around 10% and an assumption about
initial values 1011 cm−3 < [N2(A)]0 < [N(

4S)]0, one can safely
use the reduced model only.
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Figure 7: Fit of the kinetic model of the pure nitrogen after-
glow given by reduced reactions from Table 1 to the experimental
data, giving the previously unknown initial value [N(4S)]0 = 3.3 ⋅
1013 cm−3 and the value of 𝑘2.

The least squares fit of experimental data by this reduced
model is shown in Figure 7 and gives the values of previously
unknown parameters: [N(4S)]0 = 3.3 ⋅ 10

13 cm−3 and 𝑘2 =
3.1 s−1. To the rate constant 𝑘2 exists corresponding coefficient
(probability) of surface recombination/reassociation 𝛾 =
1.24 ⋅ 10−6 which is in good agreement with [68] where they
get 𝛾lit = 1.35 ⋅ 10

−6. Following the reasoning of the previous
paragraph, one may assume that these values do not strongly
depend (see Figure 6) on the initial concentration of N2(A)
(for sufficiently small [N2(A)]0).

3.3. Kinetic Modelling of Nitrogen Afterglow with Oxygen
Admixture. There are many published sets of kinetic pro-
cesses for N2-O2 mixtures with varying degree of detail [16,
28, 53–56, 69–72]. Taking into account the time scales and
typical values of concentrations, these extensive sets can be
substantially reduced and simplified. Essentially, it is possible
to extend the model of pure nitrogen afterglow (see reactions
(1)–(7)) by includingN2(X,v), O2, O, NO,NO2, andN2O (see
Table 2).

The inclusion of vibrationally excited nitrogen molecules
is necessary as these have even greater importance [73] in
N2 + O2 plasma afterglow. In a nitrogen pink afterglow
the vibrationally excited molecules carry a significant part
of energy in the afterglow [74, 75]. This energy is then
responsible for the formation of N2(A), N2(a

󸀠) and finally for
the ionisation of N2 molecules. Although the pink afterglow
was not observed [76] in atmospheric pressure plasma, one
may assume [73, 77] the concentration of N2(V = 12) greater
than 5 ⋅ 1013 cm−3 at afterglow position of 15ms.

The concentration of molecular oxygen [O2] = 1.56 ⋅
1016 cm−3 is calculated according to the ideal gas law from the
experimental conditions (625 ppmofO2 inN2 at atmospheric
pressure and room temperature).

The reaction set of Table 2 can be further reduced as
follows. Kinetic reaction (22) is negligible to the reaction (12)
because 𝑘22 is about two orders of magnitude smaller than
𝑘12. For the same reason, reaction (15) can be neglected with
respect to reaction (14). Furthermore, (26), according to the
numerical calculations, has not significant influence on the
concentration of N(4S), so it can be omitted, too.

Most of the equations describe the loss of ground state
metastable atom N(4S). Equation (13) describes production
of N(4S) but its contribution is not significant in comparison
with the losses due to reactions (8), (9), and (10). This is in
contrast with the experiment, where an increase in N(4S)
concentration is observed when oxygen is added. Using the
larger equation set of [28] does not help either. To explain the
[N(4S)] increase, (23) is needed, where vibrationally excited
molecule in the electronic ground state N2(X,v) produces N
atom and nitric oxidemolecule by reacting with oxygen atom
[69, 77].

The heterogeneous reactions in the model include the
wall deexcitation of N2(X,v), see (24), and N2(A), see (25).

As usual, the kinetic model must be supplemented by
the initial concentrations. The initial value of [N(4S)]0 was
taken from the pure nitrogen model. Due to the adsorption
of oxygen on the walls of the afterglow tube [78–81], a
smaller value of thewall recombination coefficient 𝑘2 (change
from 3.1 s−1 to 0.5 s−1) was assumed. Atomic oxygen wall
recombination coefficient 𝑘16 was considered to be same as
𝑘2 for simplicity. Rate constants for wall deexcitation (24) and
(25) were taken to be the same for both species, that is, 𝑘24 =
𝑘25, with estimated value in range of 1–10 s−1 to correspond to
[82]. The precise value of 𝑘24 and 𝑘25 is calculated by fitting
the model to the experimental data.

The final simplified set of equations considered in the
reduced model of N2-O2 afterglow consists of (1)–(3),
(7)–(14), (16)–(21), and (23)–(25). The remaining unknowns
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Table 2: Additional set of kinetic reactions for nitrogen afterglow with oxygen admixture, mostly based on [28].

Reaction number Reaction Rate coefficient Reference
(8) N + O2 → NO + O 𝑘8 = 1.03 ⋅ 10

−16 cm3 s−1 [22]
(9) N + O + N2 → NO + N2 𝑘9 = 2.74 ⋅ 10

−13 cm3 s−1 [22]
(10) N + NO→ N2 + O 𝑘10 = 1.82 ⋅ 10

−13 cm3 s−1 [22]
(11) O + NO + N2 → NO2 + N2 𝑘11 = 9.54 ⋅ 10

−13 cm3 s−1 [22]
(12) N2(A) + O2 → N2(X) + O + O 𝑘12 = 2.54 ⋅ 10

−12 cm3 s−1 [23]
(13) N2(A) + O→ NO + N(2D)→ NO + N(4S) 𝑘13 = 7 ⋅ 10

−12 cm3 s−1 [29]
(14) O + O + N2 → O2 + N2 𝑘14 = 7.91 ⋅ 10

−14 cm3 s−1 [28]
(15) O + O + O2 → 2O2 𝑘15 = 1,05 ⋅ 10

−16 cm3 s−1 [28]
(16) O + wall→ O2 + wall 𝑘16 = see text
(17) N + NO2 → N2 + O2 𝑘17 = 7 ⋅ 10

−13 cm3 s−1 [28]
(18) N + NO2 → N2 + O + O 𝑘18 = 9.1 ⋅ 10

−13 cm3 s−1 [28]
(19) N + NO2 → N2O + O 𝑘19 = 3 ⋅ 10

−12 cm3 s−1 [28]
(20) N + NO2 → 2NO 𝑘20 = 2.3 ⋅ 10

−12 cm3 s−1 [28]
(21) O + NO2 → NO + O2 𝑘21 = 2.54 ⋅ 10

−12 cm3 s−1 [28]
(22) N2(A) + O2 → N2O + O 𝑘22 = 7.8 ⋅ 10

−14 cm3 s−1 [23]
(23) N2(X,v) + O→ NO + N 𝑘23 = see text
(24) N2(X,v) + wall→ N2 + wall 𝑘24 = see text
(25) N2(A) + wall→ N2 + wall 𝑘25 = see text
(26) NO2 + NO2 + N2 → N2O4 + N2 𝑘26 = 5.64 ⋅ 10

−13 cm3 s−1 [22]
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Figure 8:The temporal evolution of main species considered in the reduced kinetic model of N2-O2 afterglow. For clarity, the data are shown
in two time scales.

are the initial concentrations of N2(A), N2(X,v) and the rate
constants 𝑘23, 𝑘24, and 𝑘25. These parameters were deter-
mined from the least squares fit of model to the experimental
data.

Figure 8 shows the calculated temporal evolution of
concentrations of main species considered in the present
model in short (a) and long (b) time scales. The dominant
species (besides the parent N2 and O2) are the nitrogen and
oxygen atoms. Interestingly, despite the very unfavourable

ratio of [O2]/[N2] = 625 ppm, there are more oxygen atoms
than nitrogen atoms in the late afterglow. Electronically and
vibrationally excited nitrogen molecules disappear quickly.
Both oxides of nitrogen, nitrogen dioxide NO2 and nitric
oxide NO, remain after 0.1 s constant, [NO] being approx. 10
times higher than [NO2].

Full comparison of the model and the experiment is
shown in Figure 9 for both cases, with andwithout the oxygen
admixture. Values of a priori unknown parameters obtained
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Figure 9: The parameters from the fit are used to calculate
the extrapolation to shorter afterglow times of kinetic models of
atmospheric pressure nitrogen afterglow with and without oxygen
admixture.

by the fit of N2-O2 model are [N2(A)]0 = 3.4 ⋅ 10
12 cm−3,

[N2(X, v)]0 = 4.5 ⋅ 10
14 cm−3, 𝑘23 = 1.6 ⋅ 10

−11 cm3 s−1, and
𝑘24 = 𝑘25 = 8.7 s

−1. The value of 𝑘23 obtained from the fit
is in very good agreement with [16] where this constant was
estimated to be at least 10−11 cm3 s.

The agreement between the models and the experimental
data in Figure 9 is very good. Moreover, the model covers
also the times shorter than 50ms which are inaccessible
by the experiment. The effect of initially increased [N] just
after oxygen admixture, which was predicted in Figure 5, is
therefore verified and explained by reaction of vibrationally
excited N2(X,v) with atomic oxygen.

4. Conclusions

Quantitative electron spin/paramagnetic resonance spec-
troscopy was used to measure the concentration of nitrogen
atoms in flowing atmospheric pressure dielectric barrier dis-
charge afterglow with typical [N] values around 2 ⋅ 1013 cm−3.
The evolution of this concentration along the afterglow tube
was shown to be significantly affected by the relatively small
amount (625 ppm) of oxygen added into the early afterglow.
The nitrogen dissociation is increased just after the oxygen
inlet and it is decreased in later parts of the afterglow.

Numerical kinetic model explains this behaviour by a
balance of production and loss terms, both of which are
affected by the presence of oxygen. Main reaction producing
N atoms is the collision of N2(X,v) with oxygen atoms. By
fitting the model to the experimental data, it was possi-
ble to estimate several a priori unknown and not directly
measurable quantities, such as the initial concentrations of
N(4S), N2(A), and N2(X,v), wall recombination coefficient of
N atoms, and rate coefficient of some reactions.
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