GANIAN, Robert, Ronald DE HAAN, Stefan SZEIDER and Iyad KANJ. On Existential MSO and its Relation to ETH. Online. In Piotr Faliszewski and Anca Muscholl and Rolf Niedermeier. 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26. Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, p. "42:1"-"42:14", 14 pp. ISBN 978-3-95977-016-3. Available from: https://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name On Existential MSO and its Relation to ETH
Authors GANIAN, Robert (203 Czech Republic, guarantor, belonging to the institution), Ronald DE HAAN (528 Netherlands), Stefan SZEIDER (40 Austria) and Iyad KANJ (840 United States of America).
Edition Germany, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, p. "42:1"-"42:14", 14 pp. 2016.
Publisher Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10201 Computer sciences, information science, bioinformatics
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
Publication form electronic version available online
RIV identification code RIV/00216224:14330/16:00093950
Organization unit Faculty of Informatics
ISBN 978-3-95977-016-3
ISSN 1868-8969
Doi http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42
Keywords in English algorithms; logic; exponential time hypothesis
Tags core_A, firank_A
Tags International impact, Reviewed
Changed by Changed by: RNDr. Pavel Šmerk, Ph.D., učo 3880. Changed: 27/8/2019 12:09.
Abstract
Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin's celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic. Monadic NP, a well-studied class in the literature, is the restriction of the aforementioned logic fragment to existential monadic second order logic. The proposed class Linear Monadic NP is then the restriction of Monadic NP to problems whose expressions have linear measure in the complexity parameter. We show that Linear Monadic NP includes many natural complete problems such as the satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code. Therefore, for any of these problems, its subexponential-time solvability is equivalent to the failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat.
PrintDisplayed: 30/9/2024 15:03