Detailed Information on Publication Record
2016
On Existential MSO and its Relation to ETH
GANIAN, Robert, Ronald DE HAAN, Stefan SZEIDER and Iyad KANJBasic information
Original name
On Existential MSO and its Relation to ETH
Authors
GANIAN, Robert (203 Czech Republic, guarantor, belonging to the institution), Ronald DE HAAN (528 Netherlands), Stefan SZEIDER (40 Austria) and Iyad KANJ (840 United States of America)
Edition
Germany, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, p. "42:1"-"42:14", 14 pp. 2016
Publisher
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/00216224:14330/16:00093950
Organization unit
Faculty of Informatics
ISBN
978-3-95977-016-3
ISSN
Keywords in English
algorithms; logic; exponential time hypothesis
Tags
International impact, Reviewed
Změněno: 27/8/2019 12:09, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin's celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic. Monadic NP, a well-studied class in the literature, is the restriction of the aforementioned logic fragment to existential monadic second order logic. The proposed class Linear Monadic NP is then the restriction of Monadic NP to problems whose expressions have linear measure in the complexity parameter. We show that Linear Monadic NP includes many natural complete problems such as the satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code. Therefore, for any of these problems, its subexponential-time solvability is equivalent to the failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat.