J 2016

HIGHER ORDER SYMMETRIES OF REAL HYPERSURFACES IN C-3

KOLÁŘ, Martin and Francine Antoinette MEYLAN-RIVIER

Basic information

Original name

HIGHER ORDER SYMMETRIES OF REAL HYPERSURFACES IN C-3

Authors

KOLÁŘ, Martin (203 Czech Republic, belonging to the institution) and Francine Antoinette MEYLAN-RIVIER (756 Switzerland)

Edition

Proceedings of the American Mathematical Society, PROVIDENCE, AMER MATHEMATICAL SOC, 2016, 0002-9939

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.679

RIV identification code

RIV/00216224:14310/16:00094002

Organization unit

Faculty of Science

UT WoS

000384000300024

Keywords in English

Catlin multitype; Levi degenerate manifold; CR automorphisms

Tags

Tags

International impact, Reviewed
Změněno: 6/4/2017 18:14, Ing. Andrea Mikešková

Abstract

V originále

We study nonlinear automorphisms of Levi degenerate hypersurfaces of finite multitype. By results of Kolar, Meylan, and Zaitsev in 2014, the Lie algebra of infinitesimal CR automorphisms may contain a graded component consisting of nonlinear vector fields of arbitrarily high degree, which has no analog in the classical Levi nondegenerate case, or in the case of finite type hypersurfaces in C-2. We analyze this phenomenon for hypersurfaces of finite Catlin multitype with holomorphically nondegenerate models in complex dimension three. The results provide a complete classification of such manifolds. As a consequence, we show on which hypersurfaces 2-jets are not sufficient to determine an automorphism. The results also confirm a conjecture about the origin of nonlinear automorphisms of Levi degenerate hypersurfaces, formulated by the first author for an AIM workshop in 2010.

Links

EE2.3.20.0003, research and development project
Name: Algebraické metody v geometrii s potenciálem k aplikacím