J 2016

Sphericity of a real hypersurface via projective geometry

KOSSOVSKIY, Ilya

Basic information

Original name

Sphericity of a real hypersurface via projective geometry

Authors

KOSSOVSKIY, Ilya (643 Russian Federation, guarantor, belonging to the institution)

Edition

International Journal of Mathematics, Singapore, 2016, 0129-167X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Singapore

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.542

RIV identification code

RIV/00216224:14310/16:00094220

Organization unit

Faculty of Science

UT WoS

000389245800005

Keywords in English

Segre varieties; spherical hypersurfaces; Chern-Moser theory

Tags

Změněno: 11/5/2017 19:05, Ing. Andrea Mikešková

Abstract

V originále

In this work, we obtain an unexpected geometric characterization of sphericity of a real-analytic Levi-nondegenerate hypersurface M in C^2. We prove that M is spherical if and only if its Segre (-Webster) varieties satisfy an elementary combinatorial property, identical to a property of straight lines on the plane and known in Projective Geometry as the Desargues Theorem.