Detailed Information on Publication Record
2016
Sphericity of a real hypersurface via projective geometry
KOSSOVSKIY, IlyaBasic information
Original name
Sphericity of a real hypersurface via projective geometry
Authors
KOSSOVSKIY, Ilya (643 Russian Federation, guarantor, belonging to the institution)
Edition
International Journal of Mathematics, Singapore, 2016, 0129-167X
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Singapore
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.542
RIV identification code
RIV/00216224:14310/16:00094220
Organization unit
Faculty of Science
UT WoS
000389245800005
Keywords in English
Segre varieties; spherical hypersurfaces; Chern-Moser theory
Změněno: 11/5/2017 19:05, Ing. Andrea Mikešková
Abstract
V originále
In this work, we obtain an unexpected geometric characterization of sphericity of a real-analytic Levi-nondegenerate hypersurface M in C^2. We prove that M is spherical if and only if its Segre (-Webster) varieties satisfy an elementary combinatorial property, identical to a property of straight lines on the plane and known in Projective Geometry as the Desargues Theorem.