Detailed Information on Publication Record
2017
Twistor Geometry of Null Foliations in Complex Euclidean Space
TAGHAVI-CHABERT, ArmanBasic information
Original name
Twistor Geometry of Null Foliations in Complex Euclidean Space
Authors
TAGHAVI-CHABERT, Arman (250 France, guarantor, belonging to the institution)
Edition
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, KYIV, NATL ACAD SCI UKRAINE, INST MATH, 2017, 1815-0659
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Ukraine
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.100
RIV identification code
RIV/00216224:14310/17:00094689
Organization unit
Faculty of Science
UT WoS
000393827700001
Keywords in English
twistor geometry; complex variables; foliations; spinors
Tags
International impact, Reviewed
Změněno: 12/4/2018 16:55, Ing. Nicole Zrilić
Abstract
V originále
We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathval{Q}^n$ , we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing– Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
Links
GP14-27885P, research and development project |
|