J 2017

Twistor Geometry of Null Foliations in Complex Euclidean Space

TAGHAVI-CHABERT, Arman

Basic information

Original name

Twistor Geometry of Null Foliations in Complex Euclidean Space

Authors

TAGHAVI-CHABERT, Arman (250 France, guarantor, belonging to the institution)

Edition

SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, KYIV, NATL ACAD SCI UKRAINE, INST MATH, 2017, 1815-0659

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Ukraine

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.100

RIV identification code

RIV/00216224:14310/17:00094689

Organization unit

Faculty of Science

UT WoS

000393827700001

Keywords in English

twistor geometry; complex variables; foliations; spinors

Tags

Tags

International impact, Reviewed
Změněno: 12/4/2018 16:55, Ing. Nicole Zrilić

Abstract

V originále

We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathval{Q}^n$ , we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing– Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.

Links

GP14-27885P, research and development project
Name: Skoro izotropní struktury v pseudo-riemannovské geometrii
Investor: Czech Science Foundation