J 2017

Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3

KLAŠKA, Jiří and Ladislav SKULA

Basic information

Original name

Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3

Authors

KLAŠKA, Jiří (203 Czech Republic, guarantor) and Ladislav SKULA (203 Czech Republic, belonging to the institution)

Edition

Mathematica Slovaca, BERLIN, WALTER DE GRUYTER GMBH, 2017, 0139-9918

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 0.314

RIV identification code

RIV/00216224:14310/17:00107140

Organization unit

Faculty of Science

UT WoS

000399003900007

Keywords in English

cubic polynomial; type of factorization; discriminant

Tags

Tags

International impact, Reviewed
Změněno: 9/4/2020 14:40, Mgr. Marie Šípková, DiS.

Abstract

V originále

Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Along the line of our preceding papers, the following Theorem has been proved: If D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)), then all polynomials in C_D have the same type of factorization over the Galois field F_p where p is a prime, p > 3. In this paper, we prove the validity of the above implication also for primes 2 and 3.

Links

GAP201/11/0276, research and development project
Name: Grupy tříd ideálů algebraických číselných těles
Investor: Czech Science Foundation