Detailed Information on Publication Record
2017
Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3
KLAŠKA, Jiří and Ladislav SKULABasic information
Original name
Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3
Authors
KLAŠKA, Jiří (203 Czech Republic, guarantor) and Ladislav SKULA (203 Czech Republic, belonging to the institution)
Edition
Mathematica Slovaca, BERLIN, WALTER DE GRUYTER GMBH, 2017, 0139-9918
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.314
RIV identification code
RIV/00216224:14310/17:00107140
Organization unit
Faculty of Science
UT WoS
000399003900007
Keywords in English
cubic polynomial; type of factorization; discriminant
Tags
International impact, Reviewed
Změněno: 9/4/2020 14:40, Mgr. Marie Šípková, DiS.
Abstract
V originále
Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Along the line of our preceding papers, the following Theorem has been proved: If D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)), then all polynomials in C_D have the same type of factorization over the Galois field F_p where p is a prime, p > 3. In this paper, we prove the validity of the above implication also for primes 2 and 3.
Links
GAP201/11/0276, research and development project |
|