Detailed Information on Publication Record
2017
Law of inertia for the factorization of cubic polynomials - the real case
SKULA, Ladislav and Jiří KLAŠKABasic information
Original name
Law of inertia for the factorization of cubic polynomials - the real case
Authors
SKULA, Ladislav (203 Czech Republic, guarantor, belonging to the institution) and Jiří KLAŠKA (203 Czech Republic)
Edition
Utilitas Mathematica, Winnipeg, Util Math Publ Inc, 2017, 0315-3681
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Canada
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.267
RIV identification code
RIV/00216224:14310/17:00094733
Organization unit
Faculty of Science
UT WoS
000398243200003
Keywords in English
cubic polynomial; type of factorization; discriminant
Tags
International impact, Reviewed
Změněno: 6/4/2018 11:36, Ing. Nicole Zrilić
Abstract
V originále
Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Assume that D<0, D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)). We prove that all polynomials in C_D have the same type of factorization over any Galois field F_p, where p is a prime, p > 3.
Links
GAP201/11/0276, research and development project |
|