J 2017

Law of inertia for the factorization of cubic polynomials - the real case

SKULA, Ladislav and Jiří KLAŠKA

Basic information

Original name

Law of inertia for the factorization of cubic polynomials - the real case

Authors

SKULA, Ladislav (203 Czech Republic, guarantor, belonging to the institution) and Jiří KLAŠKA (203 Czech Republic)

Edition

Utilitas Mathematica, Winnipeg, Util Math Publ Inc, 2017, 0315-3681

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Canada

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.267

RIV identification code

RIV/00216224:14310/17:00094733

Organization unit

Faculty of Science

UT WoS

000398243200003

Keywords in English

cubic polynomial; type of factorization; discriminant

Tags

Tags

International impact, Reviewed
Změněno: 6/4/2018 11:36, Ing. Nicole Zrilić

Abstract

V originále

Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Assume that D<0, D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)). We prove that all polynomials in C_D have the same type of factorization over any Galois field F_p, where p is a prime, p > 3.

Links

GAP201/11/0276, research and development project
Name: Grupy tříd ideálů algebraických číselných těles
Investor: Czech Science Foundation