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Abstract—A lot of research has been dedicated to finding an
optimal strategy to defend network infrastructure. The proposed
methods are usually evaluated using simulations, replayed attacks
or testbed environments. However, these evaluation methods may
give biased results, because in real life, attackers can follow
a suboptimal strategy or react to a defence in an unexpected
way. In this paper, we use a network of honeypots as a testing
environment for evaluating network defence strategies. The
honeypot network provides the opportunity to test a defence
strategy against real attackers and is not as time and resource
consuming as using white hat hackers. In our experiment, we
use two different strategies to defend a group of honeypots in
a live network and we compare these results to the results of
a simulation with replayed attacks. We show that the results
of the strategies in the simulation significantly differ from the
results on the honeypot network which implies simulations are
not sufficient for strategy evaluation. We also investigate how the
attacker adapts to the responses taken by a defence strategy and
how this change in behaviour affects the evaluation results.

I. INTRODUCTION

A lot of research has been dedicated to finding an optimal

strategy to defend network infrastructure [1]. There are many

theoretical approaches, each having its advantages and disad-

vantages. Although many of the proposed methods work well

in theory, there are too few cases of them being evaluated and

verified in practice.

Network defence strategies are usually evaluated in a simu-

lated environment. Deployment in a real environment requires

a lot of effort to set up and is risky, because the test network

could be abused by the attacker. Internal evaluation with a

white hat hacker would mitigate the risk, however, it is even

more time-consuming and getting a significant number of

results for a detailed analysis is almost impossible.

Simulated scenarios are easily set up and do not pose any

risks. A defence strategy is tested against selected attacks and

the efficiency of the defence strategy’s response is evaluated.

The attacks are usually based on attacks from public datasets,

attack vectors or, sometimes, an optimal attack strategy ob-

tained as a by-product of defence strategy synthesis.

The evaluation in a simulated environment is extremely

useful for the initial evaluation of a defence strategy and

has a lot of advantages. It is very easily set up, the results

are almost immediately available, the datasets provide a wide

variety of labelled attacks and a simulated environment allows

for varying simulation parameters and, therefore, it easily tests

different aspects of the strategy. However, there are a couple

of potential drawbacks.

The first drawback is that the attacks in the datasets may be

outdated and may not contain the latest attacks. The second

drawback is that the simulated scenarios probably do not

consider changes in an attacker’s behaviour in response to

the actions taken by the strategy. In reality an attacker may

adapt to the defence and change their actions in an unexpected

way. This could significantly affect the evaluation’s results.

Using replayed attacks would stop being a sufficient evaluation

option. Implementing an attacker’s logic in the simulated

attacks, based on attack vectors, is very demanding and prone

to incompleteness.

In this paper, we focus on the consequences of the second

drawback. We investigate whether the evaluation results are

significantly affected by the attacker’s change in behavior.

We show that the evaluation gives different results in a

simulated environment compared to on a live network facing

real attackers. To formalize the scope of our work, we pose

two research questions which we shall answer:

1) What are the differences between defence strategy eval-

uation in simulated and real environments?

2) Does the attacker change his behaviour based on the

defender’s actions?

In our experiment, we use a honeypot network to evaluate

two response strategies in a live network against real attackers.

Then, we use the same setup in a simulated scenario with re-

played attacks, which were observed on the honeypot network.

We found significant differences between the results in the real

and simulated environment.

The benefit of using the honeypot network is that the

network is attacked by a wide variety of attackers with no

risk of actual damage being done. Therefore, we gain a

high number of black hat hackers working towards our goal

with minimal effort and resources required on our side. The

honeypots also provide very detailed logging, because their

purpose is to analyse attackers’ actions. Therefore, estimating

the impact of the attack on a honeypot is much easier than on

a regular host. Moreover, we may be sure the traffic consists

solely of attacks, since legitimate users would never access

the honeypot. The disadvantage is that attackers sooner or

later recognize they are interacting with a honeypot. Thus, we

cannot test the response strategy against multi-stage attacks.



This paper is organised into five sections. Related work

is surveyed in Section II. We describe the methodology of

the experiment and the evaluated strategies in Section III.

The results of the evaluation of the strategies are shown in

Section IV. The paper is concluded in Section V

II. RELATED WORK

We are unaware of a paper that would focus solely on the

topic of strategy evaluation, however, the area is touched upon

in mostly every paper on Intrusion Response Systems (IRS).

Therefore, we mention the methodology of strategy evaluation

in those papers. We took a list of the latest intrusion response

system papers from [1] and went through the techniques used

for evaluating network based IRSs.

The evaluation techniques can be classified based on the

environment used, source of attacks and on evaluated aspects

of the strategy, such as performance against the attack (how

well does the strategy defend the network), sensitivity (how

much are the results dependent on inputs) and scalability (what

size networks could the strategy defend).

The most basic evaluation used is the verification of the

strategy’s decision logic. The evaluation is only theoretical as

the strategy is not implemented in any environment. Several at-

tack scenarios are considered based on existing attack vectors.

The authors show which actions are chosen by the strategy

in each scenario and argue that those actions are the most

advantageous in the situation [2], [3], so the only evaluated

aspect of the strategy is performance. This type of evaluation

is very limited and is not sufficient. It is used also by Kanoun et

al. [4], however, the authors are preparing for a more extensive

evaluation in a live deployment.

Most of the strategies are evaluated in a simulated environ-

ment. In the simulation scenarios, the sources of the attacks are

usually either replayed attacks [5], [6], [7] or simulated attacks

based on attack vectors [8], [9]. All of the works evaluate only

the strategy performance except for Strasburg et al. [6], who

evaluate the performance and scalability of the strategy, and

Wang et al. [9], who vary simulation parameters to test the

performance, sensitivity and scalability. The replayed attacks

come from various public DARPA datasets. The simulated

attacks, based on attack vectors, cover only a few scenarios.

The most realistic way to evaluate a defence strategy is

a real environment [10], [11]. The strategies are tested in a

small network setup with detection tools. The attacks against

the network are based on attack vectors and are performed

in-house. Because of the effort required, only a few different

attacks are used. Both works evaluate not only the strategy’s

performance, but also vary the setup to test other aspects of

the strategy.

Apart from intrusion response systems, the evaluation of

intrusion detection systems (IDS) is also a much-investigated

topic [12], [13]. The evaluation of IDSs is also facing many

issues [14], however, those issues are quite different. Intrusion

detection evaluation suffers from a lack of labelled, up-to-

date datasets, problems with the description and generation of

“normal” traffic, and a lack of zero-day attacks data.

TABLE I: Defended honeypots.

IP address Domain name Username Password

xxx.xxx.xxx.2 test admin password

xxx.xxx.xxx.3 - root raspberry

xxx.xxx.xxx.4 www root 123123

xxx.xxx.xxx.5 mail admin admin

xxx.xxx.xxx.6 db root password1

III. METHODOLOGY

This section describes the experimental environment, strate-

gies, and evaluation process. First, we describe the network of

honeypots used in the experiment and the process of attack

detection and response. Then, we present the evaluated strate-

gies, including their theoretical background and parameters

given by the experimental environment. Finally, a simulation

run and the process of strategy evaluation are described.

A. Experimental Environment

We used five high-interaction honeypots in our experiment,

the list of which can be seen in Table I. The honeypots

were chosen because they have no production value and a

certainty that any incoming traffic is, by nature, suspicious

[15]. Thus, we did not have to take false positive detections

into consideration and the production environment was spared

from changes in configuration.

The honeypots were part of an existing honeynet, which has

been running for several years [16]. The historical records of

attacks against the honeynet were used in a simulation and cost

estimations. The honeypots were placed in the same subnet

and were assigned consequent IP addresses. Thus, we were

able to observe attackers which targeted several victims at the

same time or one by one. The honeypots were also assigned

a domain name to lure potential attackers. The role of each

honeypot corresponds to its domain name (www, mail, db).

Each honeypot runs a SSH server and responded to au-

thentication attempts. The usernames and passwords were

established for each service so that the attackers could suc-

cessfully guess the combination, see Table I. The probability

of a successful attack was based on historical records of

authentication attempts against the honeynet.

B. Attack Detection and Response

The honeypots were deployed in a honeynet with central

logging mechanisms and a database of authentication attempts.

Each honeypot captured the credentials used in an authen-

tication attempt and sent them to the central database. The

database record consists of a timestamp, attacker’s IP address,

honeypot’s IP address, username, and password. These records

were used as a detection tool for the defence strategy. The

attacker is identified by a single IP address and the attack is

detected if at least one attempt from the IP is observed in the

database.

The network traffic of the honeynet flows through a gate

that had the capability to manipulate the traffic, e.g., by

blocking access to certain services for certain hosts. Every

minute, a script went through the new records in the database



TABLE II: Values of services for attacker and defender.

Target
Value of service

Unavailability cost
for attacker for defender

xxx.xxx.xxx.2 0.03 500 1

xxx.xxx.xxx.3 0.29 500 0

xxx.xxx.xxx.4 0.02 2000 10

xxx.xxx.xxx.5 0.38 3000 2

xxx.xxx.xxx.6 0.28 4000 5

and computed an optimal strategy for the current situation.

The experiment had several phases using different strategies

which are discussed later. If a strategy resulted in restricting

access to the honeypot for the attacker, the honeynet gate was

commanded to block the attacker from accessing a specific

honeypot. The blocking was implemented using a firewall rule

that dropped the traffic only between the attacker and one of

the honeypots. Thus, restricting the attacker’s access to one of

the targets didn’t influence the attacker’s access to other targets

unless the interaction between the attacker and the other target

was also found to be malicious. The restrictions could also be

lifted in case of the rule being recognized as unneeded at the

moment by the strategy.

C. Strategies

We implemented two different strategies, which were eval-

uated on the network of honeypots. We chose two concepts

which are most common in intrusion response systems - game

theory and cost analysis. The requirements placed on the

defence are as follows:

• Each service has a value for the defender. The value in-

dicates the damage the defender suffers when the service

is successfully attacked. The values of each service are

listed in Table II.

• Each service should be available all the time. For each

minute the service is not available, the defender suffers a

loss. This unavailability penalty is also listed in Table II

for each service.

• The frequent reconfiguration of iptables and a high

number of iptable rules are undesirable, so for each

added/removed iptable rule, the defender receives a re-

configuration penalty. The penalty was set to 10.

The value and the cost of unavailability for each service

were established prior to the experiment start. We based these

values on the domain names of the honeypots. We treat the

honeypot with domain name www as a web server, therefore

it has the highest cost of unavailability and a smaller value.

On the other hand the honeypot with the domain name db

is treated as a database server, therefore it has the highest

value and a lower value of unavailability. The honeypot with

the domain name mail has a medium value and unavailability

cost. The two remaining honeypots have both low value and

unavailability cost, the one with domain name test is treated

as a test web server, the other as a work station.

1) Game theory: In the first scenario, we used a game-

theory based strategy. Game theory takes into account both the

attacker’s and defender’s goals. We used the Nash equilibria

Fig. 1: One game round.
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The n-th round with history h. The A nodes mark the attacker’s moves, D
node marks the defender’s move and C node marks a chance move. The
values in brackets denote the attacker’s and defender’s reward in terminal
nodes. c(h) is the accumulated discounted defender’s reward based on history
h, ps = 0.22 is the probability of attack success, β is the discount factor,
ci(s) is the value of the service for the defender, ua(s) is the value of the
service for the attacker.

to find the optimal defender’s strategy. We modelled the

interaction between attacker and defender as a finite, non-

zero, two player game in an extensive form. Due to the

computational complexity, we were forced to model an attack

against each service as a separate attack and limit the number

of rounds to five rounds, which corresponds to a five-minute

interval. Since the upper quartile of the length of attack was

less than five minutes, we accepted this limitation.

The two players (attacker and defender) select an action in

turns. One game round is depicted in Figure 1. The actions

available to the attacker are to leave the game, gaining nothing,

or attack the target. The actions available to defender are to

block the attacker from the target by reconfiguring the IP tables

or not to block the attacker from the target. If the attacker

chose to attack and the defender chose not to block, the chance

node is reached. In the chance node the game ends with the

probability of ps = 0.22 for a successful attack and continues

with the probability of p = 0.78. The probability ps was

estimated as a weighted average of probabilities of success

for each service, based on the observed frequency of the

combination of username and password and average attempts

per minute. The reward in the terminal node is discounted by

a factor of β = 0.9 for each round and is computed as follows:

• If the game ends because of a successful attack, the

attacker gains the discounted value of the service, based

on his utility function. The defender gains the discounted

penalty for service lost and the discounted penalty for

reconfiguration and unavailability based on the history of

the final state

• If the attacker leaves, he gains nothing and the defender

gains the discounted penalty for reconfiguration and un-

availability based on the history of the final state

• If the game reaches the final state after five rounds,



the attacker gains nothing and the defender gains the

discounted penalty for reconfiguration and unavailability

based on the history of the final state

The discount factor express that the gain/loss, which is further

in future has a lower value than the same gain/loss received

sooner. The values of each service for attackers are listed in

Table II. The value of a service for the attacker is the reward an

attacker receives upon a successful attack against the service.

Given that the difficulty of attacking each target is exactly the

same and assuming the attackers choose their targets based on

the subjective target value, we based the value for the attacker

on the popularity of each target before the experiment.

We found the mixed Nash equilibria of the game using the

Gambit tool [17] and implemented a strategy based on the

equilibria strategy.

2) Cost Sensitive: The second implemented strategy was

based on cost evaluation. It considers the immediate cost

associated with each action from the defender’s point of view

and does not include the attacker’s goals into consideration. It

performs the action with the lowest associated cost.

The defender has the following responses available: to block

the attacker from the target or not to block the attacker from

the target. Each action, a, is described by two parameters: the

type of the action, type(a), which is either to block or not and

the target of the action, target(a), which denotes the service

the attacker will be blocked from or not. This means a total

of 10 actions is considered.

The cost of action a consists of two parts C(a) = Cn(a)−
Cp(a). The cost Cn(a) = Cr(s, a)+Cu(a) sums the negative

impacts of the action on the system and the cost Cp(a) sums

the positive impacts of the action. The negative impacts of

the action are the cost of reconfiguration Cr(a) and the cost

of unavailability Cu(a). The cost of reconfiguration Cr(a) is

computed based on the current configuration and the consid-

ered action as follows:

Cr(s, a) =







0 if the current state is the same as the state

of block of action a

10 otherwise

The cost of unavailability depends on the target of the action

and its associated availability value cA. It is computed for one

round, which corresponds to one minute.

Cu(a) =

{

0 if the action is not to block

cA(target(a)) otherwise

Finally, the positive impacts of the actions are estimated as the

potential damage that was mitigated by the defensive action.

The potential damage depends on the probability of an attack’s

success, ps = 0.22. It was estimated as a weighted average

of probability of an attacks’s success against each service.

This is based on the observed frequency of username/password

combinations and average attempts per minute.

Cp(a) = ps · ci(target(a))

This cost estimation follows the cost estimation in [6], which

uses the operational cost, impact of the response on the system,

and response goodness to calculate the total cost.

Each round, a script is called which considers all actions for

all attacks in terms of their cost. The action with the lowest

cost is selected and performed.

D. Simulation Run

In order to decide whether there is a difference between how

the strategy performs in a semi-real environment of a honeypot

network and in a simulated environment with replayed attacks,

we created a simulation scenario for each strategy. In the

simulation, the attacks observed before the experiment were

replayed against the strategy and the strategy’s responses were

logged. The strategy employed the same logic as it did when

deployed on the honeypot network, however, the attacker was

deprived of the possibility to react to the responses. To sim-

ulate the reconfiguration of iptables, the attempts that would

have occurred during active blocking were not considered.

E. Strategy Evaluation

In order to evaluate the strategies, we first separated the

observed attempts into attacks. An attack is a sequence of

attempts by the same attacker, regardless of the target, which

closely followed after one another. We assume that if there are

no attempts by the attacker for at least one hour, the attacker

has stopped the attack. For gaps lower than one hour, we

were looking into the pace of the attack. If the gap between

the attempts was uncharacteristically long, we also assumed

the attacker stopped their attack. Based on these requirements

a gap between the last attempt and the first attempt in the

following attack must satisfy one of the following conditions:

1) The gap between the attempt and the next one is longer

than one hour

2) The gap between the attempt and the next one is longer

than five minutes and is more than five times the average

gap between the previous five attempts

For attacks that occurred during the experiment, we added an

additional condition that the gap was not caused by a block.

We were also checking if the combination of username and

password was used by the attacker before (restarted attacks).

A graph of attack lengths is shown in Figure 2, illustrating the

distribution of attacks before the experiment.

The performance of the strategy was evaluated for each

separate attack. We computed three indicators for each attack:

• the number of reconfigurations of iptables, nr, made in

response to the attack

• the total time, nu(s), the service was blocked (in minutes)

for each service s

• whether the service was compromised for each service s

The overall score, e(a), of the strategy per attack, a, was

computed as follows:

e(a) = nr · 10 +
∑

s∈S

nu(s) · cA(s) +
∑

s∈S

nsucc(s) · cI(s),

where cA(s) is the availability value of service s, cI(s) is the

value for the defender of service s and nsucc(s) = 1 if service

s was successfully attacked, nsucc(s) = 0 otherwise.



Fig. 2: Attacks lengths

IV. RESULTS AND DISCUSSION

The experiment consisted of two steps, simulation run and

live evaluation. We ran the live evaluation in the honeynet

in August 2016. Each strategy was deployed for at least two

weeks. In Table III, we summarize the overall statistics of

the experiment, i.e., the number of attacks, successful attacks,

reconfigurations, and time interval under which the machine

was unavailable. We observed a total of 207 attacks during

the experiment with the game theory based strategy and 437

attacks during the experiment with the cost sensitive strategy.

In the simulation with replayed attacks, we replayed a vast

collection of attacks against each strategy. The attacks were

reconstructed from the historical records of authentication

attempts against the honeynet. An attack was a series of

authentication attempts that had the same source and target IP.

We used a collection of 2,148,805 authentication attempts in

15,214 attacks observed from December 2011 till June 2016.

A. Strategy Comparison

We evaluated the strategies as described in Section III-E.

Figure 3 shows a comparison of the results for both strategies.

The overall statistics of the results for each strategy are in

summed up in Table IV.

The cost sensitive strategy did better than the game theory

based strategy in the semi-real environment of honeypot net-

works. It had the advantage of longer minimal block duration

over the game theory based strategy. The average length of

attack observed prior to experiment was around 26 min. The

short duration of 5 minutes led to a high number of repeated

reconfigurations resulting in a high penalty. This is because in

the case of longer attacks, if the block is removed, the attack

is detected again and the block has to be put back in place,

resulting in two additional reconfigurations. It also prevented

a small window of opportunity for attackers to perform a

successful attack after the block was removed and before the

attack was detected again (and the block was put back in

place). As you can observe in Table III the cost sensitive

strategy has a lower relative number of successful attacks than
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Fig. 3: Comparison of Cost Sensitive and Game Theory

Strategy

the game theory based strategy. The cost sensitive strategy

is also easily scalable, which could give it an even greater

advantage on larger networks.

B. Simulated and Semi-real Execution

Next, we compared how each strategy performed in the

simulated environment and the semi-real environment. The

overall statistics for each strategy in the simulation run are

presented in Table IV. It shows that both strategies performed

differently in the simulated environment than in the semi-real

environment of the honeypot network. The mean results of the

strategies in the semi-real environment are lower than the mean

results of the strategies in the simulated environment, and the

standard deviation is also lower in the semi-real environment.

Moreover, the change is in the opposite direction. In the

experiment, the game theory based strategy performed worse

than the cost sensitive strategy. In the simulation run, it was

the other way around.

To confirm the difference in the outcomes of the strategies,

we want to show that the results in the simulated environment

do not come from the same distribution as the results in the

semi-real environment. We used the Wilcoxon–Mann–Whitney

two-sample rank-sum test [18] to test the following null

hypotheses:

1) the distribution of the game theory based strategy’s

results in the semi-real environment does not signifi-

cantly differ from the distribution of game theory based

strategy’s results in the simulated environment

2) the distribution of the cost sensitive strategy’s results in

the semi-real environment does not significantly differ

from the distribution of the cost sensitive strategy’s

results in the simulated environment



TABLE III: Experiment Statistics

Strategy # attacks # reconfigurations # minutes blocked # successful attacks Start End

Game theory 207 2374 5294 55 2016-08-01 00:14 2016-08-16 03:21

Cost sensitive 437 1029 22467 62 2016-08-16 03:41 2016-08-30 17:44

TABLE IV: Strategy Results per Attack Statistics

Strategy Count Mean strategy score Stdev

Game-theory 207 803.37 1279.24

Cost sensitive 437 489.41 937.52

None 15214 1004.47 2407.20

Game-theory* 15214 1006.363 2371.38

Cost sensitive* 15214 1109.63 2343.42

* simulation run

We were able to reject both null hypotheses with a sig-

nificance level of α = 0.01, which indicates that for both

strategies there is a statistically significant difference between

how the strategy performs in a simulated environment and how

the strategy performs in a honeypot network.

We tried to explain why the strategies would perform

better facing real attackers than replayed attacks. We suspect

the difference is tied to the difference in attack lengths as

discussed in detail in Section IV-C1. The defender’s actions

probably forced the attacker to split his attacks over time

and the result is several attacks of medium length instead of

one long attack. This leads to better result in our evaluation

scheme, however, it might be argued, whether this is the

desired result of employing a network defence.

C. Attacker’s Behaviour

We tried to investigate whether the attacker’s behaviour

changes based on the defender’s actions. We found several

statistics from the data gathered during the experiment: the

lengths of the attacks, correlation between attack lengths and

strategy evaluation scores, ratio of returning attackers and time

needed to succeed. Then we compared these statistics between

the semi-real environment runs when attacker can change his

behaviour based on the defender’s response and the simulated

environment run, when this option is taken from him.

1) Attack Lengths: We compared the lengths of the attacks

before the experiment and throughout the experiment. The

estimated density of the lengths of the attack for both strategies

and historical records is shown in Figure 4. We can see that the

lengths are lower in the historical records than in the semi-real

environment. We suspect the longer attacks could be caused

by an attacker waiting for the defender to stop blocking him

to finish the attack. The relatively high values for the cost-

sensitive strategy were caused by several very slow attacks that

occurred during the experiment. Although, the attacker made

only several attempts, the time span between the attempts was

almost one hour.

To show that there is a significant difference between the

lengths of attacks in a semi-real and simulated environment,

we used the Mann-Whitney-Wilcox test with following null

hypotheses:
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Fig. 4: Attacks lengths

1) the distribution of attack lengths observed during ex-

periment with a game theory based strategy in a semi-

real environment does not significantly differ from the

distribution of attack lengths prior to the experiment

2) the distribution of attack lengths observed during ex-

periment with a cost sensitive strategy in a semi-real

environment does not significantly differ from the dis-

tribution of attack lengths prior to the experiment

We were able to reject both hypotheses with a significance

level of α = 0.01. This confirms that the attackers were indeed

behaving differently during the experiment (when they were

actively opposed) than prior to the experiment (when they did

not meet any resistance).

2) Correlation between attack length and strategy result:

We were interested in how much the overall penalty depends

on the length of the attack. Since the defender receives the

penalty for unavailability, we would expect these two numbers

to be correlated. The correlation coefficients are shown in

Table V. There is almost no correlation between the attack

length and the strategy result when deployed in the semi-real

environment for the game theory based strategy or the cost

sensitive strategy, and in the results of no strategy. A slightly

higher correlation was observed in the simulated environment

for the cost sensitive strategy and game theory strategy. This

means that the correlation differs for data captured during

the experiment when the attacker can react to the defender’s

actions (since no strategy is how the honeypot network was

defended up to now) and the data from the simulated environ-



ment with replayed attacks.

TABLE V: Correlation between attack length and strategy

result

Strategy Correlation 95% Confidence interval

Game-theory 0.11 [-0.02, 0.25]

Cost sensitive 0.06 [-0.03, 0.15]

None 0.05 [0.03, 0.07]

Game-theory* 0.35 [0.33, 0.36]

Cost sensitive* 0.41 [0.39, 0.42]

* simulation run

The overall low correlation is caused by the minimal block

duration for each strategy. The low correlation between penalty

and attack length for no strategy indicates that the attack’s

success is dependent mostly on whether the attacker has the

right combination of username and password in his dictionary,

and not on the length of the attack.

3) The Return of the Attacker: Another interesting aspect

of the attacker’s behaviour is the tendency to repeat the attack.

For both strategies, we computed the average ratio of attackers

who repeated their attack in a period of the next 10 days.

We compared the results with the same values computed for

attacks observed before the experiment. A boxplot with results

is shown in Figure 5. The average ratio of returning attackers

is 0.24 during the experiment with the game theory based

strategy, 0.26 during the experiment with the cost sensitive

strategy and 0.11 in the historical data.
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Fig. 5: Attacker’s Return Ratio

We can see that the return rate of the attacker is higher

when the attacker has a chance to react to the defender’s

actions. One explanation might be that the attacker gives up

after being blocked, however, returns later to finish the attack.

We also investigated whether the returning attackers were

starting from where they left off (meaning the combinations of

usernames and passwords were not observed in the previous

attack by the same attacker). We saw only a very low number

of restarted attacks, which supports the hypothesis that the

attackers paused their attacks when blocked and continued the

attack later.

4) Time to Succeed: We investigated how long the attacker

needs to successfully attack the service. We took all the

successful attempts and computed the time from the beginning

of the attack. The statistics of the measured times are shown in

seconds in Table VI. The average values are rather small due to

weak passwords. The highest average value was computed for

no strategy, which is not very surprising since this is the only

strategy that allows the attacker to succeed over the length of

the whole attack. Overall these statistics do not point to any

change of attacker behaviour.

TABLE VI: Time to succeed

Strategy Mean time to succeed Stdev

Game-theory 238.80 s 546.39 s

Cost sensitive 855.03 s 2068.91 s

None 1055.36 s 7561.65 s

Game-theory* 431.64 s 3938.81 s

Cost sensitive* 300.08 s 7561.65 s

* simulation run

D. General Discussion

In this section, we would like to summarize comments and

lessons learned during the experiment’s setup and run. The

following comments might not relate directly to the research

questions, however, we find them relevant to the subject of

strategy verification.

The data shows that the attacker does indeed change his

behaviour if he faces an active defence. We found out that the

active defence does not deter the attacker. On the contrary,

the attackers were more persistent in their attacks during

the experiment and often returned to continue the attack.

We have two most probable hypotheses for the attacker’s

motivation for this change of behaviour. Either the act of

defending suggests that there is something worth defending,

which increases the attacker’s motivation, or we were dealing

with automated attacks scripted so that the given sequence of

username/password combinations is always finished and the

observed change in behaviour was caused by retry mechanisms

in the script. Since we cannot confirm or reject our hypothesis

with the attackers, we cannot find the true reasoning behind

their actions.

The computational complexity of the strategies is often not

reflected in the evaluation. We encountered this limitation with

the game theory based strategy. If the strategy cannot be scaled

with reasonable computational complexity, it might perform

very well, however, it could not be used in real deployment

since networks tend to be of a larger scale than in experiments.

Although game theory has performed well, it could not (in

its current form) be used in practice. However, this attribute

could be detected during the simulation verification since we

can easily scale our network in simulated environment.



The combination of one-time costs and cost per unit of time

has to be very carefully considered. Specifically, in the security

triad Confidence, Integrity, Availability, the former two are

one-time costs and the latter is a cost per unit of time. Since we

were running an experiment, we defined these values without

the need to justify them. However, in deployment in a real

network, the system administrator would be hard pressed to

estimate these parameters.

Deployment in a real environment forces the authors to

address all aspects of the strategy, such as an estimation of

parameters, what inputs are available, whether the assumptions

about other components are realistic, and so on. The strategy

is viable only if all parameters can be estimated, inputs

supplemented and all assumptions met. In our case, we needed

to estimate the probability of an attack’s success, the values

of the services and we also had to take into account that, by

blocking, we lose detection ability.

V. CONCLUSIONS

In this paper, we have evaluated two network defence

strategies in a simulation run and on a live honeypot network

to compare evaluation in a real-life and simulated environment.

Our first research question regarded the difference between

defence strategy evaluation in simulated and real environ-

ments. When we compared the results of the simulation run

and the live evaluation, we could see that both strategies

were performing better in the live evaluation than in the

simulation run. We attribute this difference to the change

in attackers’ behaviour. This suggests there are significant

differences between theoretical and practical evaluation that

have to be taken into account if we want to evaluate new

defence strategies.

To answer our second research question concerning the

change in attackers’ behaviour when facing an active defence,

we studied various statistics from the data gathered during

the experiment and before the experiment. We found that the

attacks were on average longer during the experiment and

that a higher number of attackers repeated their attack. We

concluded that an active defence does not deter the attacker.

On the contrary, the attackers are more persistent in their

attacks and often return to continue the attack.

We observed notable differences between the evaluation

in a simulated environment and on a honeypot network. We

conclude that using replayed attacks for evaluating strategy is

not sufficient. Since implementing an attacker’s behavior in the

simulation scenarios is going to be a very demanding task, it is

clear that the field of strategy evaluation faces a considerable

challenge.

In our future work, we are going to focus more deeply

on the attacker’s reaction to a defence. We would like to

expand our experiment so that the attacker can observe and

react to the success of his attack. However, for this, we

would need a high-interaction honeypot that allows successful

intrusion. It would also be very useful to find ways how to

distinguish between scripted attacks and human-driven attacks.

Since scripted attacks follow a very simple logic, the defence

could be tailored to counter this logic, and therefore, could be

much more efficient.
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