NETWORK DEFENCE STRATEGY EVALUATION: SIMULATION VS. LIVE NETWORK

Tuesday 9th May, 2017

Jana Medková Martin Husák, Martin Drašar

Introduction

- optimal strategy to defend network infrastructure
- no standard for benchmarking

Network Defence Strategy Evaluation Page 2 / 17

Introduction

- optimal strategy to defend network infrastructure
- no standard for benchmarking
- current state of strategy evaluation:
 - verification of the strategy's decision logic
 - evaluation in a simulated environment
 - simulated attacks
 - replayed attacks
 - evaluation in a real environment, in-house attacks

Network Defence Strategy Evaluation Page 2 / 17

Research Questions

- 1. What are the differences between defence strategy evaluation in simulated and real environments?
- 2. Does the attacker change his behaviour based on the defender's actions?

Network Defence Strategy Evaluation Page 3 / 17

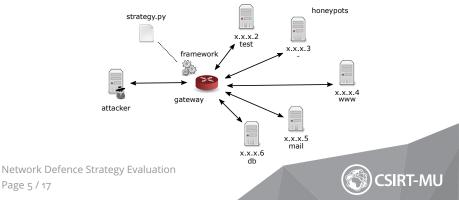
Experiment Setup I

Semi-real Run

during the experiment, the strategy was set to defend a network of honeypots in Masaryk University network

Simulation Run

attacks observed on the network of honeypots before the experiment were replayed against the strategy


Network Defence Strategy Evaluation Page 4 / 17

Experiment Setup II

Honeynet Topology

- central logging mechanisms and a database of authentication attempts
- gate that had the capability to manipulate the traffic
- experiment setup described in demo session

Experiment Setup III

Defence Requirements

- the service should not be compromised (attack success penalty),
- the service should be available (unavailability penalty),
- the firewall should not be reconfigured frequently (reconfiguration penalty).

Network Defence Strategy Evaluation Page 6 / 17

Tested Strategies I

Game Theory Based Strategy

- both the attacker's and defender's goals
- Nash equilibria to find the optimal defender's strategy
- finite, non-zero, two player game in an extensive form

Cost Sensitive Strategy

- considers the immediate defender's cost associated with action
- action cost consists of
 - negative impacts: cost of reconfiguration, cost of unavailability
 - positive impacts: potential damage that was mitigated by the defensive action

Network Defence Strategy Evaluation Page 7 / 17

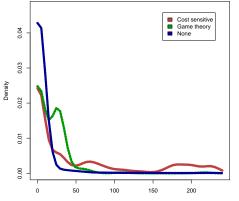
Collected Data

- experiment:
 - 644 attacks,
 - July and August 2016
- historical data:
 - 15,214 attacks,
 - December 2011 till June 2016

Strategy	Game theory	Cost sensitive
# attacks	207	437
# reconfigurations	2,374	1,029
# minutes blocked	5,294	22,467
# successful attacks	55	62

Network Defence Strategy Evaluation Page 8 / 17

Simulated and Semi-real Execution


There is a statistically significant difference between the evaluation results in a simulated environment and a semi-real environment.

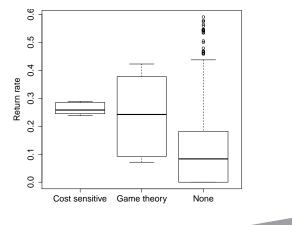
Environment	Strategy	Mean strategy score	Stdev
Semi-real	Game-theory	803	1,279
Semillea	Cost sensitive	489	938
Simulated	Game-theory	1,006	2,371
	Cost sensitive	1,109	2,343

Network Defence Strategy Evaluation Page 9 / 17

Attack Length

Minutes

Network Defence Strategy Evaluation Page 10 / 17


Correlation Between Attack Length and Strategy Result

Environment	Strategy	Correlation	95% CI
Semi-real	Game-theory	0.11	[-0.02, 0.25]
	Cost sensitive	0.06	[-0.03, 0.15]
Simulated	Game-theory	0.35	[0.33, 0.36]
	Cost sensitive	0.41	[0.39, 0.42]

Network Defence Strategy Evaluation Page 11 / 17

Return Rate

Network Defence Strategy Evaluation Page 12 / 17

Summary

The attackers reacted to the defence as follows:

- the attacks had longer duration
- they returned more often to continue in the attack
- the strategy result is less dependent on the length of the attack

Network Defence Strategy Evaluation Page 13 / 17

Conclusion I

Lessons Learned

- the formal definition of requirements is not sufficient
- computational complexity of the strategies is often not reflected in the evaluation and have to be considered
- deployment in a real environment forces to address all aspects of the strategy

Network Defence Strategy Evaluation Page 14 / 17

Conclusion II

Summary

- the most common evaluation is executed in simulated environment using replayed or simulated attacks
- we show that the evaluation using replayed attacks is not sufficient, since the attackers change in behaviour affects the evaluation results
- we found several changes in attacker behaviour due to the network defence

Network Defence Strategy Evaluation Page 15 / 17

Conclusion III

Future Work

- we need a better, standardized methods for evaluation to enable objective comparison
- the evaluation should begin with simple, easily setup scenarios and continue to more realistic scenarios
- at least some of the evaluations should face real attackers

Network Defence Strategy Evaluation Page 16 / 17

THANK YOU FOR YOUR ATTENTION!

☆ www.kypo.cz✓ @csirtmu

Jana Medková medkova@ics.muni.cz

