J 2017

Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results

LEJCEK, Pavel, Mojmír ŠOB a Vaclav PAIDAR

Základní údaje

Originální název

Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results

Autoři

LEJCEK, Pavel (203 Česká republika), Mojmír ŠOB (203 Česká republika, garant, domácí) a Vaclav PAIDAR (203 Česká republika)

Vydání

Progress in Materials Science, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2017, 0079-6425

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10302 Condensed matter physics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Impakt faktor

Impact factor: 23.750

Kód RIV

RIV/00216224:14740/17:00094771

Organizační jednotka

Středoevropský technologický institut

DOI

http://dx.doi.org/10.1016/j.pmatsci.2016.11.001

UT WoS

000398676100003

Klíčová slova anglicky

Solute segregation; Interfacial embrittlement; Grain boundary; Free surface; Computer modeling; Measurements of local composition

Štítky

rivok

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 28. 2. 2018 11:55, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

One of the most dangerous technical failures of materials is intergranular brittle fracture ( temper embrittlement) as it proceeds very quickly and its appearance is often hardly predictable. It is known that this phenomenon is closely related to the chemistry of grain boundaries and to the difference of the segregation energies of the grain boundaries and the free surfaces (RiceWang model). To elucidate the effect of individual solutes on embrittlement of various materials such as steels and nickel-base superalloys, grain boundary and surface segregation was extensively studied in many laboratories. As a result, numerous data on surface and grain boundary segregation have been gathered in literature. They were obtained in two main ways, by computer simulations and from experiments. Consequently, these results are frequently applied to quantify the embrittling potency of individual solutes. Unfortunately, the values of the segregation energy of a solute at grain boundaries as well as at the surfaces obtained by various authors sometimes differ by more than one order of magnitude: such a difference is unacceptable as it cannot provide us with representative view on the problem of material temper embrittlement. In some cases it seems that these values do not properly reflect physical reality or are incorrectly interpreted. Due to the above mentioned large scatter of the segregation and embrittlement data a critical assessment of the literature results is highly needed which would enable the reader to avoid both the well known and less well known pitfalls in this field. Here we summarize the available data on interfacial segregation and embrittlement of various solutes in nickel and bcc iron and critically discuss their reliability, assessing also limitations of individual approaches employed to determine the values of segregation and strengthening/embrittling energies, such as density functional theory, Monte Carlo method, molecular statics and dynamics and tight binding on the theoretical side, and Auger electron spectroscopy, 3D tomographic atom probe, and electron microscopy techniques on the experimental side. We show that experimental methods have serious limitations which can be overcome by accepting reasonable assumptions and models. On the other hand, the theoretical approaches are limited by the size of the computational repeat cell used for the calculations of the segregation energy. In both cases, a careful critical analysis of the available segregation energy and/or enthalpy reflecting physical reality allows to assess the reliability of these values and their applicability in analysis of intergranular brittle fracture in steels and nickel-base alloys. (C) 2016 Elsevier Ltd. All rights reserved.

Návaznosti

GA14-22490S, projekt VaV
Název: Struktura, magnetismus a pevnost rozhraní v pokročilých kovových materiálech
Investor: Grantová agentura ČR, Struktura, magnetismus a pevnost rozhraní v pokročilých kovových materiálech
LQ1601, projekt VaV
Název: CEITEC 2020 (Akronym: CEITEC2020)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CEITEC 2020
Zobrazeno: 20. 10. 2024 17:17