J 2017

Law of inertia for the factorization of cubic polynomials - the imaginary case

KLAŠKA, Jiří and Ladislav SKULA

Basic information

Original name

Law of inertia for the factorization of cubic polynomials - the imaginary case

Authors

KLAŠKA, Jiří (203 Czech Republic, guarantor) and Ladislav SKULA (203 Czech Republic, belonging to the institution)

Edition

Utilitas Mathematica, Winnipeg, Kanada, Util Math Publ Inc, 2017, 0315-3681

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Canada

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 0.267

RIV identification code

RIV/00216224:14310/17:00107142

Organization unit

Faculty of Science

UT WoS

000401308200007

Keywords in English

cubic polynomial; type of factorization; discriminant

Tags

Tags

International impact, Reviewed
Změněno: 9/4/2020 14:41, Mgr. Marie Šípková, DiS.

Abstract

V originále

Let D be a square-free positive integer not divisible by 3 such that the class number h(-3D) of Q((-3D)^(1/2)) is also not divisible by 3. We prove that all cubic polynomials f (x) = x^3 + ax^2 + bx + c in Z[x] with a discriminant D have the same type of factorization over any Galois field F_p, where p is a prime bigger than 3. Moreover, we show that any polynomial f(x) with such a discriminant D has a rational integer root. A complete discussion of the case D = 0 is also included.

Links

GAP201/11/0276, research and development project
Name: Grupy tříd ideálů algebraických číselných těles
Investor: Czech Science Foundation