

Towards Stream-based IP Flow
Analysis

Tomas Jirsik, Milan Cermak, Daniel Tovarnak, and Pavel Celeda1

Abstract

Analyzing IP flows is an essential part of traffic measurement for cyber security. Based on

information from IP flows, it is possible to discover the majority of concurrent cyber threats in

high-speed, large-scale networks. Some major prevailing challenges for IP flow analysis

include, but are not limited to, analysis over a large volume of IP flows, scalability issues,

and detecting cyber threats in real time. In this article, we discuss the transformation of

present IP flow analysis into a stream-based approach to face the above-mentioned

challenges. We examine the possible positive and negative impacts of the transformation

and present examples of real-world applications, along with our recommendations. Our

ongoing results show that stream-based IP flow analysis successfully meets the above-

mentioned challenges and is suitable for achieving real-time network security analysis and

situational awareness.

Introduction

Monitoring IP flows and their analysis play a vital role in network traffic measurements for

cyber security. Currently, IP flows are broadly used for traffic measurement in large-scale,

high-speed networks, cloud environments, and various enterprise networks [1]. IP flow

analysis is used for detecting the majority of severe contemporary cyber threats, such as

Denial-of-Service (DoS), botnets, and Advanced Persistent Threats (APT). Moreover, the

analysis can be done both on unencrypted and encrypted traffic, as IP flows gather

information only from packet headers. Such advantages have made IP flow monitoring

a fundamental part of network traffic measurement for cyber security.

Nevertheless, IP flow analysis still faces several challenges raised by the rapid evolution of

the threat landscape. First, network traffic measurement has become a Big Data problem.

Due to the increasing volume and velocity of network traffic, it has become expensive and

impractical to first store and then read again all IP flows from large networks for analysis.

Second, it has become impossible to analyze a large volume of IP flows from networks in

real time. This plays an important role for automated defense mechanisms that need to take

an action as soon as possible [2]. Current approaches try to face this challenge by

increasing the hardware performance of analytical machines or simple master-slave

architectures. Nevertheless, the IP analysis itself stays centralized, scalability of these

solutions is limited, and analysis time still remains relatively long. Last, but not least, the time

needed to detect a cyber attack is a challenge for IP flow analysis. Current IP flow-based

1
 Tomas Jirsik, Milan Cermak, Daniel Tovarnak, and Pavel Celeda are with Masaryk University

cyber security solutions exhibit a detection delay in the order of minutes. Such a delay may

be fatal when we try to reduce the harm caused by an attack [3]. Therefore, demands for

near real-time attack detection have risen recently.

To address the above-mentioned challenges, we present a transformation of current IP flow

monitoring and analysis into a scalable stream-based approach. In the stream-based

approach, the IP flows are processed and analyzed in data streams immediately after an IP

flow is observed. The analysis of IP flows in data streams reduces the volume of data that

needs to be stored. This is because data is kept in primary memory for the time necessary

for processing and only results are stored in the secondary memory. This represents the

greatest advantage of the stream-based concept. It allows the user to perform an immediate

data analysis, which makes real-time attack detection possible. Moreover, thanks to the

distribution of data streams within a computing cluster, this is possible even in large-scale,

high-speed networks.

In this article, we will describe the transformation of current IP flow traffic measurement and

analysis towards a scalable stream-based solution. We will present a workflow of stream-

based IP flow analysis, along with its prototype implementation. Capabilities of the approach

will be demonstrated on cyber security use-cases followed by practical implications for its

usage.

Basic Concepts

To cover the basic concepts used in this article, we provide an overview of IP flow-based

network monitoring and data stream processing. This overview can be considered as a high-

level abstraction of the main ideas of both areas, for a detailed description consult [1, 4, 5].

Network IP Flow Monitoring

IP flow monitoring was principally designed to monitor high-speed network traffic in large-

scale networks. Since the performance limitations do not allow to process, store, and

analyze all information from each packet in such networks (Deep Packet Inspection), an

abstraction of single direction communication, called an IP flow, was introduced. An IP flow

is defined as a set of packets passing through a point in the network during a certain time

interval. All packets belonging to a particular IP flow have a set of common properties called

flow keys (RFC 7011). The traditional 5-tuple of flow keys is comprised of source and

destination IP address, source and destination port, and transport protocol. Apart from the

traditional 5-tuple, the IP flow contains statistics about the connection (such as the number

of packets in an IP flow), and may be enriched by information from the application layer of

network traffic. IP flow information is stored in flow records.

Data Stream Processing

Stream processing systems (historically referred to as Data Stream Management Systems

[5]) emerged in response to the poor performance of traditional persistent databases, which

were not designed for the rapid and continuous updates of individual data items continuously

arriving at high velocities. The key differences between traditional data processing and

stream processing are summarized in Table 1.

Data stream is a possibly infinite, discrete, and ordered sequence of data elements with

a given schema and assigned timestamp. Stream processing systems are designed to

evaluate continuous queries over many data streams in real time, whilst predominantly using

only primary memory for storage. The existing implementations of stream processing

systems differ in several aspects including, but not limited to, query language capabilities,

nature of processed data, time model, and so on. For example, Esper6 is a full-fledged

stream processing engine focused on evaluating continuous SQL-like queries over streams

of events. For an extensive survey of stream processing systems see [6].

Nowadays, a new generation of stream processing systems is emerging that is generally

referred to as distributed stream processing frameworks. These systems are used to

process generic data streams and provide capabilities for distributed processing. In many

cases, users must implement their own processing logic, yet they are provided with powerful

abstractions that allow them to transparently execute the implemented logic in a parallel-

distributed way. The most notable examples of distributed stream processing frameworks

include Samza, Spark, Storm, and Flink (all maintained by Apache Software Foundation)7.

Traditional processing vs. Stream processing

Data stored as persistent sets Data Infinite streams of individual data tuples

Large secondary memory Storage Small primary memory

Ad-hoc Queries Continuous

No real-time capabilities Real-time Real-time processing

Single-query Optimization Multi-query

Mature tools and technologies Maturity New tools and technologies

Table 1. Differences between traditional and stream data processing.

Stream-based Workflow of IP Flow Analysis

The transformation of the traditional workflow of network IP flow monitoring into the stream-

based raises new challenges and requirements that must be addressed. We summarize the

6
 http://www.espertech.com/esper/

7
 http://{samza|spark|storm|flink}.apache.org/

functional and nonfunctional requirements for this transformation and describe the resulting

workflow together with relevant systems. To demonstrate the possibilities of this approach,

we present the Stream4Flow framework that is based on modern systems for large data

processing.

Design Considerations

To successfully transform the batch-based workflow of IP flow analysis into stream-based, it

is necessary to meet the same requirements as the original approach and in real time. The

data processing speed plays an especially important role, but so do other requirements must

be met, such as a set of available data processing operations, fault tolerance, and system

durability. As regards to the minimal data processing speed of the approach, it must at least

correspond to the average number of flows generated by observation points inside the

monitored network. For example, in a medium sized network of 24,000 active IP addresses,

we observed an average of 12,000 flows/second and 110,000 flows/second in the national

wide research and education network. It can be expected that these numbers will grow in the

future and, for that reason, the scalability possibilities of the stream-based processing should

be also considered so that it will not be necessary to significantly change the data

processing algorithms.

The stream-based approach of IP flow data analysis must enable to process the IP flow data

in a similar way as traditional batch-based approaches. This means that it should provide at

least the same basic set of data processing operations. Based on the common IP flow

analysis algorithms, we identified the following minimal set of operations that should be

provided: filter, count, aggregation, combination, sort, and Top N. The stream-based

approach should also enable to apply these operations to larger units of data and, thus, the

window functionality is necessary to supply traditional batch-based approaches. In addition

to the available operations, stream-based data processing must also ensure that each flow

was processed just once to avoid skewed results. Thus, the recoverability and durability

options of data processing system should be considered too.

Workflow Design

Analyzing IP flows in real time was almost impossible in previously due to the poor

performance of data processing systems. In recent years, however, a change has occurred

and a number of scalable systems for fast batch-based and stream-based processing of

large volumes of data were progressively introduced. In the paper [7], the authors

demonstrated that distributed stream processing frameworks, such as Spark, Samza, and

Storm, are able to process at least 500,000 flows/s using 16 or 32 processor cores, which is

sufficient for common networks. Thanks to this, it is possible to utilize these frameworks and

extend traditional workflow of IP flow monitoring and analysis. This enables to analyze IP

flows in real time and provides other analytical methods that are not possible, or difficult to

achieve, in common batch-based systems.

A generic interconnection of typical workflow of stream-based data processing and

traditional IP flow monitoring workflow is shown in the Fig. 2. To allow such interconnection it

Elastic Stack$%
composed of Logstash, Elasticsearch, and Kibana.

As discussed above, the workflow of stream-based IP flow analysis combines several

interconnected components. The choice of systems for each of the components should

reflect the proposed use, deployment environment, and other mentioned requirements. A list

of the most suitable systems for a stream-based IP flow analysis is listed in the Table 2.

Workflow component Suggested systems

Collector IPFIXCol, Logstash

Messaging system Apache Kafka, NATS, RabbitMQ

(The full list available at [8])

Stream processing
framework

Spark Streaming, Flink, Samza, Storm, Trident
(All maintained by Apache Software Foundation)

Data storage Elasticsearch, Druid, OrientDB
(Next Generation Databases)

User interface Kibana, Grafana, Tableau

Table 2. Suggested systems for the workflow of stream-based IP flow analysis.

Workflow Prototype

To demonstrate possibilities of the presented workflow for real-time analysis of IP flows, the

Stream4Flow framework was introduced (available at https://github.com/CSIRT-

MU/Stream4Flow). This framework, among others, interconnects modern systems for fast IP

flow data processing, provides simple administration, enables fast application development

and demonstrates the possibilities of stream-based IP flow analysis. The basis of the

framework is formed by the IPFIXCol collector, which enables incoming IP flow records to be

transformed into the JSON format provided to the Kafka messaging system. The selection of

Kafka was based on its scalability and partitioning possibilities, which provide sufficient data

throughput. Apache Spark was selected as the data stream processing framework for its

quick IP flow data throughput [7], available programming languages (Scala, Java, or Python)

and MapReduce programming model [9]. The analysis results are stored in Elastic Stack

containing Kibana, which enables browsing and visualizing the results. The Stream4Flow

framework also contains the additional web interface (Fig. 3), in order to make administration

easier and visualize complex results of the analysis.

10

 https://www.elastic.co/v5

Stream-based IP flow analysis represents a suitable approach for creating a current micro

view of the network. It allows us to compute a number of detailed characteristics

simultaneously due to the support of scalable and distributed computing. Distributed stream

processing systems are able to create a micro view of the network as they provide enough

computational power needed to compute a number of live and detailed statistics. First, these

systems are designed with scalability in mind. Thus the computational resources can be

instantly increased by adding additional computational nodes to the system. Second, they

provide the means to distribute the IP flow analysis over multiple computational nodes,

which allows analyses at a scale that is impossible on a single machine. The distribution is

achieved via the MapReduce programming model [9], traditionally used for distributed batch-

based processing, yet now adapted to be utilized also in a streaming fashion. Third, all the

data are processed on-the-fly in primary memory, which increases throughput as no disk I/O

operations are necessary during the analysis. The unique combination of scalability,

distributed processing, and on-the-fly data processing makes the creation of a micro view for

situational awareness possible in real time.

Our experimental deployment provides a demonstration of an in-depth situational awareness

application in a stream-based workflow prototype. We use the MapReduce programming

model [9] for creating the micro view by computing host statistics for all devices in our

network. A host’s IP address is set as a map key for data distribution. The choice of the key

and MapReduce model enables us to compute detailed characteristics that represent

a host’s activity in the network (the number of transferred packets, bytes, communication

partners, and so on), and a host’s communication profile (such as frequently visited IP

addresses, web pages, or active hours in a network). The micro view enables us to detect

malicious hosts activities or abrupt changes in host behavior caused by the attacker. Our

production instance of the prototype is able to maintain these statistics and detections for

each of the 22,500 hosts in real time.

The ability of stream-based approach to process large volumes of IP flow data has also been

shown in the paper [7]. We benchmarked current distributed stream processing systems and

their suitability for IP flow data analysis on large volumes. The benchmark measured the

throughput of the systems on a set of typical analysis queries. The systems were able to

process up to 2 million flows/s on a cluster with 32 vCPU in total. This result was also

confirmed by an experimental deployment of the prototype in our network, where it was able

to successfully process all the provided IP flows.

It is important to point out here that stream processing changes the nature of the data

analysis itself, since the data are processed on-the-fly and the analysis must be performed in

a certain fashion. In batch-based IP flow data analysis, it is possible to perform a query over

historical data, or search back through raw data for additional information after detecting

a successful attack. In stream-based IP flow analysis, the data cannot be analyzed

retrospectively (ex-post analysis). The start of the stream-based data analysis is marked with

the creation of a particular analytical continuous query. Since ex-post analysis is as vital as

real-time analysis in the context of complex network security, we recommend extending the

stream-based workflow with a suitable primary data retention store to make the optional ex-

post analysis possible.

Our experience shows that the majority of batch-based detection methods can be

transformed into a stream-based approach. The above-mentioned reduction of the window in

the stream-based approach, however, influences the IP flow analysis in several ways and it

is necessary to adapt detection methods appropriately. First, the computed statistics become

more volatile and detection techniques may report higher errors with the original settings.

Therefore, the detection method settings (for example thresholds) need to be adapted

accordingly to provide correct results. Second, the reduction of the window size raises the

issue of ordering the IP flows coherently, since their misplacement to an inaccurate window

may bias detection results. The IP flows may get misordered due to link latencies or data

loss during their collection from the probes. Traditionally, this is managed by considering the

arrival time as a baseline for ordering, but the detection methods must be adapted

accordingly to reflect this necessary alleviation.

Summary and Outlook

Stream-based IP flow analysis represents a natural complement to current batch-based

approaches to cyber security. It aids traditional monitoring with the ability to run analytical

queries that are evaluated in real time with high throughput, low latency and good scalability,

all at the same time. This allows security analysts to perform real-time analyses on network

data, detect network attacks instantly, and provides them with a deep understanding of the

network via in-depth situational awareness. The stream-based analysis workflow benefits

from compatibility with current monitoring systems and excels in real-time attack detection,

monitoring both network and individual hosts, and providing a context to network security.

The presented distributed stream-based framework for IP flow analysis is able to handle

streams of large volume of data at high speeds, and keeps up with latest network monitoring

trends.

Since the volume, speed, and diversity of network traffic will continue to increase in the

following years, network monitoring tools should follow this trend [11]. The tools of the future

should be able to process traffic at speeds of over 100 Gb/s, gather more information from

network traffic (such as service-specific or IoT information), and should natively support

a wider variety of formats for exporting IP flows (such as DSF). In a similar manner to the

probes, stream processing systems will have to process more data at higher speeds. This

challenge is partially solved by the above-described scalability of current systems.

Nevertheless, we expect optimizations for managing resources more efficiently in memory

allocation, or query response time, for example via the use of sketches and other

probabilistic data structures, which are likely to emerge. Moreover, advanced data mining

and machine learning methods for intrusion detection are expected to be adapted and

natively supported by future data stream systems.

We anticipate increased utilization of network IP flow monitoring for both network and host

security. With the emergence of new visionary paradigms, such as the Internet of Things,

host-based security will become obsolete as it will be impossible to guarantee the proper

setup of host security systems for all connected devices. Network traffic measurement,

namely IP flow analysis, will become essential for network defense. We believe that stream-

based IP flow analysis is a suitable approach to reach the next-generation of network

security.

Acknowledgement
This research was supported by the Technology Agency of the Czech Republic under

No. TA04010062 Technology for processing and analysis of network data in big data

concept.

References

[1] R. Hofstede et al., "Flow Monitoring Explained: From Packet Capture to Data Analysis

With NetFlow and IPFIX," Commun. Surveys Tuts., vol. 16, no. 4, 2014, pp. 2037-2064.

[2] A. Kott et al., Cyber Defense and Situational Awareness, 2014.

[3] U. Franke et al., “Availability of enterprise IT systems: an expert-based Bayesian

framework,” Software Quality Journal, vol. 20, no. 2, 2012, pp. 369-394.

[4] A. Sperotto et al., "An Overview of IP Flow-Based Intrusion Detection," Commun.
Surveys Tuts., vol. 12, no. 3, 2010, pp. 343-356.

[5] B. Babcock et al., "Models and Issues in Data Stream Systems," Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

2002.

[6] G. Cugola, and A. Margara, "Processing Flows of Information: From Data Stream to

Complex Event Processing," ACM Computing Surveys, vol. 44, no. 3, 2012, pp. 1-62.

[7] M. Cermak et al., "A Performance Benchmark for NetFlow Data Analysis on Distributed

Stream Processing Systems," Proceedings of the 2016 IEEE/IFIP Network Operations and

Management Symposium, 2016.

[8] L. Strzalkowski, “Queues,” August 2016; http://queues.io

[9] J. Dean, and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters,"

Communications of the ACM, vol. 51, no. 1, 2008, pp. 107-113.

[10] E. Cole, Network Security Bible, 2011.

[11] Cisco, “The Zettabyte Era: Trends and Analysis”, August 2016;

http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-

vni/index.html

Biographies

Tomas Jirsik (jirsik@ics.muni.cz) obtained his M.S. in applied mathematics from Faculty of

Science, Masaryk University, Czech Republic. He is currently a Ph.D. candidate at Faculty of

Informatics and a member of Computer Security Incident Response Team of Masaryk

University (CSIRT-MU). Besides his main research activities in network data analysis,

anomaly detection, and host monitoring, he participates in several projects concerning

network security monitoring, cyber education, and big data analytics.

Milan Cermak (cermak@ics.muni.cz) is a security researcher at the Computer Security

Incident Response Team of Masaryk University (CSIRT-MU) and a Ph.D. candidate in

Computer Systems and Technologies at the Faculty of Informatics, Masaryk University. His

main research interests include large-volume network data analysis and advanced network

threat detection based on similarity search. He is currently focusing on characterization of

anomalies patterns and their utilization for real-time classification of ongoing network traffic.

Daniel Tovarnak (tovarnak@ics.muni.cz) obtained his M.S. in applied informatics from the

Faculty of Informatics, Masaryk University, Czech Republic. Currently, he is a Ph.D. student

at the Faculty of Informatics and a researcher in Computer Security Incident Response

Team at Institute of Computer Science of Masaryk University. His focus lies on the

applications of Complex Event Processing paradigm in the context of security monitoring. He

specializes in security data processing and data normalization in distributed environments.

Pavel Celeda (celeda@ics.muni.cz) is an associate professor affiliated with the Institute of

Computer Science at the Masaryk University in Brno. He received a Ph.D. degree in

Informatics from University of Defence, Brno. His main research interests include cyber

security, flow monitoring, situational awareness and research and development of network

security devices. He has been participating in a number of academia, industry and defense

projects. He is the head of the CSIRT-MU.

