J 2017

Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing

ŘEZNÍK, Tomáš, Vojtěch LUKAS, Karel CHARVÁT, Karel, mladší CHARVÁT, Zbyněk KŘIVÁNEK et. al.

Basic information

Original name

Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing

Authors

ŘEZNÍK, Tomáš (203 Czech Republic, guarantor, belonging to the institution), Vojtěch LUKAS (203 Czech Republic), Karel CHARVÁT (203 Czech Republic), Karel, mladší CHARVÁT (203 Czech Republic), Zbyněk KŘIVÁNEK (203 Czech Republic), Michal KEPKA (203 Czech Republic), Lukáš HERMAN (203 Czech Republic, belonging to the institution) and Helena ŘEZNÍKOVÁ (203 Czech Republic)

Edition

ISPRS International Journal of Geo-Information, Basel, SWITZERLAND, MDPI, 2017, 2220-9964

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10508 Physical geography

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.723

RIV identification code

RIV/00216224:14310/17:00097281

Organization unit

Faculty of Science

UT WoS

000408868400010

Keywords in English

precision farming; machinery telemetry; wireless sensor network; remote sensing

Tags

Tags

International impact, Reviewed
Změněno: 18/5/2020 13:22, Mgr. Marie Šípková, DiS.

Abstract

V originále

Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.

Links

LTACH17002, research and development project
Name: Dynamické mapovací metody orientované na řízení rizik a katastrof v éře velkých dat
MUNI/A/1419/2016, interní kód MU
Name: Integrovaný výzkum environmentálních změn v krajinné sféře Země II
Investor: Masaryk University, Category A