D 2017

Measuring Similarity of Educational Items Using Data on Learners’ Performance

ŘIHÁK, Jiří and Radek PELÁNEK

Basic information

Original name

Measuring Similarity of Educational Items Using Data on Learners’ Performance

Edition

Wuhan, China. Proceedings of the 10th International Conference on Educational Data Mining, p. 16-23, 8 pp. 2017

Publisher

International Educational Data Mining Society

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

China

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

Organization unit

Faculty of Informatics

Keywords in English

domain modeling; item similarity; similarity measures; simulated data; evaluation

Tags

International impact, Reviewed
Změněno: 29/1/2018 08:06, doc. Mgr. Radek Pelánek, Ph.D.

Abstract

V originále

Educational systems typically contain a large pool of items (questions, problems). Using data mining techniques we can group these items into knowledge components, detect duplicated items and outliers, and identify missing items. To these ends, it is useful to analyze item similarities, which can be used as input to clustering or visualization techniques. We describe and evaluate different measures of item similarity that are based only on learners' performance data, which makes them widely applicable. We provide evaluation using both simulated data and real data from several educational systems. The results show that Pearson correlation is a suitable similarity measure and that response times are useful for improving stability of similarity measures when the scope of available data is small.

Links

MUNI/A/0897/2016, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VI.
Investor: Masaryk University, Category A
MUNI/A/0992/2016, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A