J 2017

Ti atom and Ti ion number density evolution in standard and multi-pulse HiPIMS

FEKETE, Matej, Jaroslav HNILICA, Catalin VITELARU, Tiberiu MINEA, Petr VAŠINA et. al.

Basic information

Original name

Ti atom and Ti ion number density evolution in standard and multi-pulse HiPIMS

Authors

FEKETE, Matej (703 Slovakia, belonging to the institution), Jaroslav HNILICA (203 Czech Republic, belonging to the institution), Catalin VITELARU (642 Romania), Tiberiu MINEA (250 France) and Petr VAŠINA (203 Czech Republic, guarantor, belonging to the institution)

Edition

Journal of Physics D: Applied Physics, Bristol, IOP PUBLISHING LTD, 2017, 0022-3727

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10305 Fluids and plasma physics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.373

RIV identification code

RIV/00216224:14310/17:00094893

Organization unit

Faculty of Science

UT WoS

000415299900001

Keywords in English

magnetron sputtering; HiPIMS; plasma diagnostics; EBF; TD-LAS; m-HiPIMS

Tags

Tags

International impact, Reviewed
Změněno: 12/4/2018 15:40, Ing. Nicole Zrilić

Abstract

V originále

In this paper, comparison of standard and multi-pulse high power impulse magnetron sputtering is performed. The effective branching fraction method is used for titanium atom and ion number density determination, showing that the residual titanium atoms and ions from the preceding pulse are crucial for the subsequent pulse initiation and development. It is shown that the discharge current rises faster in the subsequent pulse, but does not reach the same maximum as in the preceding pulse. The time evolution of the titanium atom density shows different behaviour, initial increase is followed by decrease in the preceding pulse and a rather constant evolution during the subsequent pulse. As for the titanium ion number density, it reaches typically lower values in the subsequent pulse, approaching the maximum values from the preceding pulse only at long delays of 1.5 ms. The most significant increase of the total ion flux to the substrate, namely 43% increase with respect to standard high power impulse magnetron sputtering, is observed in the multi-pulse high power impulse magnetron sputtering with the shortest studied delay of 200 us. The residual titanium atoms produced by the preceding pulse are already thermalized at the beginning of the subsequent pulse, thus being available for ionization during the subsequent pulse. The reservoir of these thermalized atoms gets depleted as the delay increases. However, even for the longest studied delay of 1.5 ms the influence of the preceding pulse on the subsequent pulse is still distinct, including the enhancement of the total ion flux to the substrate by 23%.

Links

ED2.1.00/03.0086, research and development project
Name: Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
GAP205/12/0407, research and development project
Name: Porozumění hybridnímu PVD-PECVD procesu s cílem řídit růst nanostrukturovaných kompozitních vrstev
Investor: Czech Science Foundation
GA15-00863S, research and development project
Name: Studium impulzních plazmatických systémů k depozici tenkých vrstev pro fotonické aplikace
Investor: Czech Science Foundation
LO1411, research and development project
Name: Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy (Acronym: CEPLANT plus)
Investor: Ministry of Education, Youth and Sports of the CR