J 2017

De Morgan Algebras with Tense Operators

CHAJDA, Ivan and Jan PASEKA

Basic information

Original name

De Morgan Algebras with Tense Operators

Authors

CHAJDA, Ivan (203 Czech Republic) and Jan PASEKA (203 Czech Republic, guarantor, belonging to the institution)

Edition

JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, PHILADELPHIA, OLD CITY PUBLISHING INC, 2017, 1542-3980

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.437

RIV identification code

RIV/00216224:14310/17:00097592

Organization unit

Faculty of Science

UT WoS

000403136800003

Keywords in English

De Morgan lattice; De Morgan poset; tense operators; dynamic De Morgan algebra

Tags

NZ, rivok

Tags

International impact, Reviewed
Změněno: 31/3/2018 11:11, Ing. Nicole Zrilić

Abstract

V originále

To every propositional logic satisfying double negation law is assigned a De Morgan poset epsilon. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on E. The triple D = (epsilon; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a (strict) dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction. In particular, any strict dynamic De Morgan algebra is representable in its Dedekind-MacNeille completion with respect to a suitable countable time frame.

Links

EE2.3.20.0051, research and development project
Name: Algebraické metody v kvantové logice
Displayed: 2/11/2024 14:57